[bookmark: h.uubnw5wcr6v]Constructing Functional Views
[bookmark: h.j6tgqgsynfpn]Issue:
The process of creating Functional Views has been discussed at the Minneapolis Sprint, Dagstuhl Sprint, and in the Technical Committee following the Dagstuhl Sprint. In order to create a binding of a Functional View by the end of the the Copenhagen Sprint we need to decide the following (at least for initial testing):

1. What will the Functional View be composed of?
2. What “view level” documentation is needed and where does this reside?
3. (non-critical) What set of standard content classes should be available in all Functional Views or identifiable sets of Functional Views?
[bookmark: h.xdoko4i47c1g]Action:
· Review the issue points
· Expand the pro’s and con’s to include those from earlier discussion
· Determine which issues require and answer prior to testing production and when others should be resolved.
· Document positions and any decisions
[bookmark: h.yg9qhib0l77p]Discussion of Decision 1:
There are three possible ways of defining views:
1. As a subset of classes of the model. Classes will be included with all their properties and relationships.
2. As a subset of classes and relationships of the model. Classes will be included with all their properties whereas some relationships can be excluded.
3. As a subset of classes, relationships and properties of the model. Some properties and relationships of the participating classes can be excluded.

The goal of Functional Views in DDI is to reduce the complexity of DDI for the user, directing them clearly to the sub-set of classes relevant to their use case with documentation that provides support for a specific application area. For example, classes used to create a Question Bank with documentation focused on the specific issues of versioning, testing, applied use, and related Questions. Functional Views should be self contained, provide high level documentation on their cover, related use cases, and instructions regarding extensions (addition of more DDI classes or locally created classes). A Functional View should be narrow enough to exclude extraneous classes yet broad enough to support a common set of use cases within the target community.

[bookmark: h.1bdtt0ezvwe6]Pro’s and Con’s of three options

	Approach
	Pro’s
	Con’s

	1
	--No loss of content within a class if transferring between 2 or more Functional Views
--No additional programming rules required to select and enter a class in the binding for a Functional View
--Keeps the production process simple
	--Many classes include both descriptive and machine actionable content, to have just the descriptive content (for a simple human readable product) a new “base” class would be required with a more complex class using this as an extension (change in class name)

	2
	--Allows for restriction of more complex or machine actionable content without a difference in class name
	--Information could be lost if transferring content between two Functional Views containing the same class
--Requires the ability to note which classes have been restricted for transparency

	3
	--Allows total flexibility to restrict a class to reflect the needs of the target group and use case
	--Information could be lost if transferring content between two Functional Views containing the same class
--Requires the ability to note which classes have been restricted for transparency
--Massively adds to the complexity of the production process

Note that for Approach 1 restrictions could be done at the level of documentation, i.e. the full class is included but additional documentation clarifies the properties and relationships that should be considered “core” for the target community and identified use cases. This only partially addresses the goal of simplification for the user by removing those classes identified as irrelevant but still including complex content that the user is instructed to “ignore”.

The other option in dealing with core content and more extensive content within a class, is to create a simple class and then extend it. HOWEVER, this results in two different classes containing the same information. If you want to move a simple class to its more extended class you need to rename and re-identify the content.

[bookmark: h.rm6xawi0f9g9]DECISION:
Use approach 1 (full class inclusion). Use documentation to clarify what the properties and relationships of a class are relevant or “core” to the Use Case of the Functional View. Any reference to an class NOT contained in a view is defined as an external reference.

In Drupal this means that at Functional View level there needs to be a means of adding usage information for each class according to its role in the Functional View.

In discussing extensions we need to be clear that the first choice is to use the existing properties and relationships in the class, Then local extensions. Need to talk about buffering and not losing content during exchanges.

When there is a need to restrict a functional view it should be done on the instance level (i.e. like a DDI-L profile).

[bookmark: h.5otd2w9n8n4d]Discussion of Decision 2:
This is dependent upon the approach taken for constructing a Functional View but all approaches should include:
1. Description of the Target audience and Uses Cases addressed by the Functional View
2. Listing of included classes (full or partial use flag)
a. In a Functional View Drupal needs to allow the inclusion of a class, a flag to indicate that it is used in full or partial, and view specific usage documentation for the class (this becomes a 4 column table - use, name, full/part, documentation)
b. This is going to require firm guidelines for writing this documentation
3. Examples related to the target audience and Use Cases addressed by the Functional View
4. Class level usage documentation within the view
Sphinx document contains and injects:
1. Description of the Target audience and Uses Cases addressed by the Functional View
2. Examples related to the target audience and Use Cases addressed by the Functional View
[bookmark: h.wlwx1f2ce474]Discussion of Decision 3:
Possible questions regarding Decision 3:
1. Are all Functional Views intended for the same purpose? For example, are all Functional View types intended to permanent (managed) or are some temporary by nature, such as the equivalent of a 3.2 Fragment Instance?
2. Is there a subset of classes/properties that should be available in all Functional Views of a similar purpose? (see question 1)
3. What is the extension base of the top level (wrapper in XML) class in a Functional View? (i.e. if not an Annotated Identifiable then much of this information should be included in another way for file level discovery purposes.)
4. How soon does this decision need to be made?

[bookmark: h.b22ksat6y1kw]Decisions:
1. Yes we have more than one type of View but we at least know we have some that are permanent/managable.
2. Top level wrapper is NOT an AnnotatedIdentifiable just a package in the UML model
3. For consistency sake we should have rules regarding which utility classes are included in the managed views.
4. This discussion can inform the recommendation coming out TC and is expected to evolve in the future.

[bookmark: h.xhnwjmlo7i4k]Related documents
TC View Definitions
TC Functional View Discussion on standard contents
