Functional Views – Status
2015-11-24

Discussion Members:
Wendy Thomas, Arofan Gregory, Jon Johnson, Achim Wackerow
[bookmark: h.j6tgqgsynfpn]Issues:
The process of creating Functional Views has been discussed at the Minneapolis Sprint, Dagstuhl Sprint, and in the Technical Committee following the Dagstuhl Sprint. In order to create a binding of a Functional View by the end of the the Copenhagen Sprint we need to decide the following (at least for initial testing):

1. How will the Functional View be constructed (technically)?
2. What “Functional View Level” documentation is needed and where does this reside?
3. What set of standard content classes should be available in all Functional Views or identifiable sets of Functional Views?
[bookmark: h.xdoko4i47c1g][bookmark: h.yg9qhib0l77p]Issue 1: Technical Construction of Functional Views
Decision:
1. A Functional View will be a sub-set of classes from the Library. They will be included with no restrictions or extensions.
2. Documentation will be used to clarify what the properties and relationships of a class are relevant or “core” to the Use Case of the Functional View.
3. Any reference (within an included class) to a class NOT contained in a view will be defined as an external reference.
4. This requires documentation of the use of a class in a Functional View. Drupal will be edited to include the following in the current 2 column edit table for adding classes to a Functional View:
a. A flag indicating that the full content of the class is being used by the Functional View
b. A documentation field to provide usage information specific to the use of the class in the Functional View. Guidelines as to content and structure will be provided. Documentation is required when the full content flag is not checked.

General documentation on all Functional Views should include:
· Extensions beyond the documented usage of the classes within the Functional View should FIRST use the existing properties and relationships contained in the class.
· Information regarding buffering and the need to avoid the loss of content during exchanges.
· When there is a need to restrict a functional view it should be done on the instance level (i.e. like a DDI-L profile).
Background discussion:
There are three possible ways of defining views:
1. As a subset of classes of the model. Classes will be included with all their properties and relationships.
2. As a subset of classes and relationships of the model. Classes will be included with all their properties whereas some relationships can be excluded.
3. As a subset of classes, relationships and properties of the model. Some properties and relationships of the participating classes can be excluded.

The goal of Functional Views in DDI is to reduce the complexity of DDI for the user, directing them clearly to the sub-set of classes relevant to their use case with documentation that provides support for a specific application area. For example, classes used to create a Question Bank with documentation focused on the specific issues of versioning, testing, applied use, and related Questions. Functional Views should be self contained, provide high level documentation on their cover, related use cases, and instructions regarding extensions (addition of more DDI classes or locally created classes). A Functional View should be narrow enough to exclude extraneous classes yet broad enough to support a common set of use cases within the target community.

[bookmark: h.1bdtt0ezvwe6]Pro’s and Con’s of three options

	Approach
	Pro’s
	Con’s

	1
	--No loss of content within a class if transferring between 2 or more Functional Views
--No additional programming rules required to select and enter a class in the binding for a Functional View
--Keeps the production process simple
	--Many classes include both descriptive and machine actionable content, to have just the descriptive content (for a simple human readable product) a new “base” class would be required with a more complex class using this as an extension (change in class name)

	2
	--Allows for restriction of more complex or machine actionable content without a difference in class name
	--Information could be lost if transferring content between two Functional Views containing the same class
--Requires the ability to note which classes have been restricted for transparency

	3
	--Allows total flexibility to restrict a class to reflect the needs of the target group and use case
	--Information could be lost if transferring content between two Functional Views containing the same class
--Requires the ability to note which classes have been restricted for transparency
--Massively adds to the complexity of the production process

Note that for Approach 1 restrictions could be done at the level of documentation, i.e. the full class is included but additional documentation clarifies the properties and relationships that should be considered “core” for the target community and identified use cases. This only partially addresses the goal of simplification for the user by removing those classes identified as irrelevant but still including complex content that the user is instructed to “ignore”.

The other option in dealing with core content and more extensive content within a class, is to create a simple class and then extend it. HOWEVER, this results in two different classes containing the same information. If you want to move a simple class to its more extended class you need to rename and re-identify the content.

[bookmark: h.rm6xawi0f9g9]Issue 2: Functional View level documentation
Decision:
The following documentation should be provided for the Functional View:
Housed in Drupal
1. [bookmark: h.5otd2w9n8n4d]Listing of included classes (full or partial use flag) generated from Drupal content
a. In a Functional View Drupal needs to allow the inclusion of a class, a flag to indicate that it is used in full or partial, and view specific usage documentation for the class (this becomes a 4 column table - use, name, full/part, documentation)
b. This is going to require firm guidelines for writing this documentation
2. Class level usage documentation within the view
Housed in Sphinx
1. Description of the Target audience and Uses Cases addressed by the Functional View
2. Examples related to the target audience and Use Cases addressed by the Functional View
[bookmark: h.wlwx1f2ce474]Issue 3: Standard Content in Functional Views
[bookmark: h.b22ksat6y1kw]Decision:
1. There will be more than one type of Functional View. Each type may require different standard class sub-sets. Currently we will focus on Functional Views which are intended to be permanent (managed).
2. The top level wrapper is NOT an AnnotatedIdentifiable just a package in the UML model
3. For consistency sake we should have rules regarding which utility classes are included in the managed views.
4. This discussion can inform the recommendation coming out TC and is expected to evolve in the future. TC will complete their recommendation document and file as an issue with the Modelling Team. They will use this approach in the second development review and request feedback from the community.

[bookmark: h.xhnwjmlo7i4k]Related documents
TC View Definitions
TC Functional View Discussion on standard contents
