Functional Views – Discussion
Draft comments – Wendy Thomas – 2015-11-12
Note that the technical construction of Functional Views has not yet been determined. However, there are pieces of information needed to describe the view regardless of how it is constructed. Identifying these pieces is the point of this discussion. Some of the following statements are contingent upon how a Functional View is finally constructed. It is also assumed that all of the information would be captured in Lion to push out to the bindings and documentation. Additional directional information may be held in the Sphinx documentation for incorporation within the production process.
The structure of Functional Views has changed a bit since the first release. Discussion at the Minneapolis Sprint moved towards a Functional View that uses both full and restricted classes from the DDI Class Library to create a Functional View meeting the needs of an identified User Group / Use Case / Class of Actors. Some assumptions were made about the XML and RDF bindings of these Functional Views related to how their purpose and content is relayed to the end user. These included:
· A description of the purpose of the Functional View
· Identification of the User Group / Use Case / Class of Actors targeted by the Functional View
· A listing of all classes included in the Functional View indicating if they are used in full or restricted
· The use of SKOS may be useful in defining these restrictions
· Version of Class Library used
[bookmark: h.gjdgxs]Additional consideration should be given to the commonly available content of an instance created using a Functional View. There are certain properties which are required for any instance that is intended to be preserved, discovered, or otherwise maintained. Note that these properties would not be necessary for instances that are intentionally transitory (such as the DDI 3.2 Fragment Instance). Note that we currently do not know the various classes of intended use for Functional Views (i.e. intentionally transitory, managed, etc.), however, membership of a Functional View class should be easy to determine so that a consistent pattern of discovery and descriptive information can be identified for use.
If the root class of a Functional View is always of a type or extension of Annotated Identifiable it will automatically contain a full annotation covering the following properties:
· Title
· Subtitle
· Alternate title
· Creator
· Publisher
· Contributor
· Date (any administrative date)
· Language
· Identifier
· Copyright
· Type of Resource
· Information Source
· Version Identification
· Version Responsibility
· Abstract
· Related Resource
· Provenance
· Rights
· Record Creation Date
· Record Last Revision Date
These do not address additional issues of discovery and/or access management. The additional classes Access and Coverage would add information at the instance level for:
Access
· Description (of access)
· Confidentiality Statement
· Access Permission
· Restrictions
· Citation Requirement
· Deposit Requirement
· Access Conditions
· Disclaimer
· Contact Agent
· Apply Access To 
· Valid Dates
Coverage
· Temporal Coverage
· Topical Coverage
· Spatial Coverage
Note that while Coverage is a general topic for the instance content regardless of who is managing it, the Access content could be either intrinsic to the content (access conditions controlled by the creator) and/or vary by the managing unit (i.e. ICPSR limiting access to member institutions).
For this reason it may be useful to have a pattern or abstract Functional View Class that can be used as an extension base for all Functional Views which are non-transient in nature:
· Functional View Class
· Extension base: Annotated Identifiable
· Property:
· ContentCoverage (datatype [new]: StructuredString with an External Controlled Vocabulary Entry for typing this as Table Of Contents, List of Variables, etc.)
· Relationship:
· DocumentCoverage (Target Object: Coverage)
· PersistentAccessControl (TargetObject: Access)
· LocalAccessControl (TargetObject: Access)

Note that in reviewing the content of the Simple Codebook View they list the following classes and properties. The following table lists those classes and properties along with an indication of which would be present in the abstract Functional View Class.
	Simple Codebook Object
	Functional View equivalent
	Property / Relationship

	Annotation
	Annotation
	Relationship

	Abstract
	Annotation/Abstract
	Property

	Purpose
	
	Property

	Analysis Unit
	
	Property

	Analysis Units Covered
	
	Property

	Documented Version
	
	Property

	Authorization Source
	
	Relationship

	Universe Reference
	DocumentCoverage/SpatialCoverage/ Description [close match]
	Relationship

	Series Statement
	Annotation/relatedResource
	Relationship

	Quality Statement Reference
	
	Relationship

	Ex-Post Evaluation
	
	Relationship

	Funding Information
	
	Relationship

	Study Budget
	
	Relationship

	Coverage
	DocumentCoverage
	Relationship

	Kind of Data
	
	Relationship

	Required Resource Packages
	
	Relationship

	Embargo
	
	Relationship

	Data Collection
	
	Relationship

	Agent
	
	Relationship

	DDI Profile
	
	Relationship

	Other Material
	
	Relationship

	Annotation
	[Remove - Duplicated class]
	Relationship



