Technical Committee Review Coverage
The role of the Technical Committee in publishing versions or portions of the DDI standard for review or use includes reviewing the content in terms of its adherence to DDI modeling guidelines. Specific versions may have additional guidelines (such as the DDI-Codebook concerning the retention and non-restriction of all existing classes).	Comment by Wendy Thomas: Add note regarding where this fits in overall with modeling rules for all of DDI. Determine where this will go once completed, how it is updated

References are to the PDF documents on the page Guidelines for Business Modelers.[footnoteRef:1] [1: https://ddi-alliance.atlassian.net/wiki/spaces/DDI4/pages/37552132/Modeling+Guidelines+for+Business+Modelers]

Structural Package Content Review:
The purpose of this review is to verify that modeling guidelines have been followed.
	Object of Review
	Rule
	Guideline Reference

	Use of primitives and complex data types
	All properties should have a datatype that is either a Primitive or a Complex Data Type

No relationship can have a Target that is a Primitive or a Complex Data Type

No property in a Class with an extension base of Identifiable should have any of the following data types (these are limited to use by other Complex Data Types):
AnnotationDate
BasedOnObject
Command
CommandFile
Context
LiteralText
LocalId
NonIsoDateType
ResourceIdentifier
String
StructuredCommand
Text
TextContent
	Class Types: Identifiable, Annotated Identifiable, Complex Data Type

ALERT: when making changes to Complex Data Types

	Use of Annotation and contents
	All uses of Annotation other than its use in AnnotatedIdentifiable must have a property name that designates the object the annotation describes (i.e. citationOfExternalMaterial)
	Annotation: Annotation and it's properties

	Use of appropriate Cardinality
	Properties:
Always 0..1 or 0..n UNLESS one of the following is true:
Default value specified
Fixed value specified
Required for class to function and the use of the class is optional
Relationships:
Source Cardinality:
[bookmark: _GoBack]Composition type: 0..1
Aggregation type: 0..1 or 0..n
Neither (Simple) type: 0..n
Target Cardinality:
0..1 to 0..n UNLESS all of the following is true:
Source class is unusable if Target is not provided
Information is available at all production points
Minimum number of Targets required (i.e. a polygon requires a minimum of 4 points to describe it)

When overwriting an inherited relationship the cardinality may NOT be relaxed
	Cardinality: Properties and Relations	Comment by Wendy Thomas: Add section on primitives and review what they are and how they are used. How do they work in target bindings and will they be represented appropriately and well

	Use of Identifiable and AnnotatedIdentifiable
	All classes not found in Primitives or Complex Data Types must extend from Identifiable at their base

All classes with Identifiable at their base must have an independent existence and have a possible relationship to multiple instances of a class or classes (i.e. CodeItem)

All classes that extend from AnnotatedIdentifiable must contain content that needs to be discoverable in its own right and expresses intellectual property in and of itself
	Class Types: Identifiable, Annotated Identifiable, Complex Data Type

	Consistency in Class structure: Property usage	Comment by Wendy Thomas: Review of these to make sure they are complete and tie in well with DDI-L to make sure everything makes sense with intended usages
	When overwriting an inherited property the cardinality may NOT be relaxed

URN, URL, and URI:
All datatype will be xs:anyURI
Property name MUST be “uri” [lower case] UNLESS:
A URN or URL is explicitly required OR
Multiple properties of type xs:anyURI need to be differentiated by purpose or usage (i.e. uriBlueprint)

Text datatypes are limited to the following and usage must match their descriptive usage and structure notes:
DynamicText
ExternalControlledVocabularyEntry
InternationalString
OneCharString
PairedExternalControlledVocabularyEntry
InternationalStructuredString
TypedDescriptiveText
Value
xs:string

Date datatypes are limited to the following and usage must match their descriptive usage and structure notes:
Date
DateRange
IsoDate
ReferenceDate

Descriptive properties must be one of the following and contain the standard name, datatype, cardinality, and description. The description of the property may have content added to clarify its use within the specific class.
Name
DisplayLabel
Definition
Purpose
Usage
Rationale
Overview
DescriptiveText

Use of the property name “description” is NOT ALLOWED
	Property Options: Usage

Property Options: Text

Property Options: Date

Property Options: Standard

	Consistency in Class structure: pattern structures
	All classes MUST be abstract

Classes should NEVER extend from AnnotatedIdentifiable

Properties and relationships should be limited to the basic requirements of the class (limit descriptive properties to those required by the role of the class)

Classes should NEVER realize another pattern class (they should use it as an extension base)
	Patterns: Creation and Use

	Consistency in Class structure: pattern realization
	A class that “realizes” a pattern class:
MUST contain ALL of the properties and relationships of the pattern class (included those inherited from its extension base). Note that cardinality may be constrained but not relaxed.

MUST include the relationship “realizes” with Target Object=[Pattern class name], Description=”Uses pattern for [Pattern class name], Source cardinality=”0..n”, Target cardinality=”1..1”, Relationship type=”Neither”

Target Object must be constrained to a non-Pattern subtype of the pattern class

If the Pattern Class has an extension base of Identifiable (directly or inherited) the class MUST extend from Identifiable, AnnotatedIdentifiable, or any class that already realizes the same pattern class.

If the Pattern Class is a Complex Data Type (i.e. NOT Identifiable) the realization MUST be placed in ComplexDataType and may have ONLY an extension base of another ComplexDataType realizing the same pattern class OR have no extension base at all.

A class may realize more than one pattern class as long as all properties and relationships are included. The “realizes” relationship is not carried into the bindings and therefore does not get overwritten.
	Patterns: Creation and Use

	Consistency in Class structure: Documentation within a class
	For any inherited property or relationship that is being overwritten by the inheriting class, all original documentation MUST be retained. New content may be added

Default values: Documentation MUST begin with “Default value is [value].” This may be followed with any additional documentation desired

Fixed values: Documentation MUST begin with “Fixed to [value].” This may be followed with any additional documentation desired
	Documenting Classes: Expanding Documentation in Inheritance	Comment by Wendy Thomas: Check that this does not arise from the fact that a property or relationship should not be inherited (e.g. that the base object is too complex or detailed)

Property Options: Default and Fixed Values

	Verify that Design Principles are followed
	Classes must conform to the design principles based on the following metrics:
1. Documentation
a. Readability
b. Acronym usage
c. Documentation reflects principles and modeling guidelines
2. Design
a. Proportion of classes that carry forward
b. Change information
c. Level of complexity – sufficient but not gratuitous
i. Balances complexity with functionality and understandability
d. Compatibility with previous versions
3. Capability
a. Coverage of existing DDI-C, DDI-L, and GSIM content	Comment by Wendy Thomas: ADD:
B. Does not conflict with DDI-C, DDI-L and GSIM
C. Capture mapping in detail and make sure it is complete and correct

What level of detail is needed in terms of GSIM as it is a conceptual model

	Design Principles	Comment by Wendy Thomas: Review the Design Principles and possible metrics

Functional View Content Review:	Comment by Wendy Thomas: Review intent and implementation of Functional Views within TC
	Object of Review
	Rule
	Guideline Reference

	Content of a Functional View
	DocumentInformation is included for all Functional Views intended to be persistent in nature (i.e. XML publication of a codebook for archive purposes)	Comment by Wendy Thomas: Will be reviewed in the Codebook View review and is scheduled for further discussion and review in the Modeling Team

MUST contain:
· ONLY classes from published packages
· A clear starting point that allows for the identification and relationship information for all component classes making up the Functional View
· ALL relationship targets except as noted in Functional View documentation
· NO abstract classes	Comment by Wendy Thomas: Unless the relationship is being constrained completely there must be one or more sub-type included
· NO Complex Data Types
· NO orphans (defined as classes unrelated to one or more entry points identified in the documentation, i.e. the contents must hold together as a unified whole)
	Functional Views: Overview

Functional Views: Requirements and Structure

Functional Views: Step-by-Step Process

	Documentation of a Functional View
	Documentation of the Functional View MUST provide clear definition of:
Purpose
Use Case(s)
Target Audience (intended users)
List of constrained classes with documented usage	Comment by Wendy Thomas: This should agree with the list of classes included
Specialized use of classes
General documentation on use of the Functional View
	Functional Views: Requirements and Structure

