Production Framework - 20170117

Risk assessment - including mitigation of risks for staying with Drupal longterm - see spreadsheet work (Risk Analysis)

RECOMMENDATION:
Aim to replace reliance on Drupal post prototype delivery (June 2018)
Start work on testing COGS as soon as possible. 
Preconditions:
Resolution of outstanding issues:
· Development of interface for straight-forward entry of classes, properties, relationships etc without losing the batch entry (CSV) entry option
· Decision on workflow
· XMI as canonical point for generation of downstream outputs 
· CSV based model as canonical point for generation of downstream outputs 
· Validation framework - incompatible duplicates, orphan identification etc
· Business rule validation - e.g modelling guidelines 
· Migration plan (e.g diff COGS output vs Drupal output)
· Support for bulk editing e.g across more than one class
Finalise testing by end of May 2018 for smooth transition.


Production Framework for Prototype:

The following needs to be supported by Drupal in the short-term for production of the June 2018 prototype:

· Critical issues
· Validation of Views business rules (re: orphans, inclusion of Complex Data Types, all classes are from packages included in build)
· Set status flags values for classes so that those that are prioritized, reviewed, and approved could be appropriately flagged 
· Running Sphinx in production workflow (Jenkins) 
· Non-critical issues:
· Integration of examples into Drupal
· Formating of descriptive content

This process presupposes that coverage of DDI4 Prototype will be defined, priorities set, and work focused on those priorities over the next 8-9 months.




Package as means of organizing the Library of Classes
· Is the purpose for management - differentiation of core from extensions
· Relating major areas ala GSIM
· Easy viewing of small easy to view subsets 
· Separation of types of classes: pattern, complex data types, primitives, realizations of patterns
Views as a means of informing implementers and entry users what classes are used for specific use cases
· Direct users to certain parts of the model for specific purposes
· Arbitrary selection of classes from the library
· Regardless of how created requires examples and use case specific documentation 
	
Technical issues can/should be addressed further downstream in terms of queries etc.

Best assistance for users (content entry) and implementers:
· Examples - use case specific
· Graphical images
· Context sensitive documentation down to class level - use case specific

This implies a set of metadata (version agnostic) that can be used to generate examples in each version and binding (noting what cannot be handled by a specific version or binding). It would show not only the comparability between versions but aid in the selection of a version to accomplish specified goals of the use case. 



