I. Appendix I: A Short Guide to UML in the SDMX Information Model
A. Scope

The scope of this document is to give a brief overview of the diagram notation used in UML. The examples used in this document have been taken from the SDMX UML model.

B. Use cases

In order to develop the data models it is necessary to understand the functions that require to be supported. These are defined in a use case model. The use case model comprises actors and use cases and these are defined below.

The actor can be defined as follows:

“An actor defines a coherent set of roles that users of the system can play when interacting with it. An actor instance can be played by either an individual or an external system”

The actor is depicted as a stick man as shown below.

[image: image1.emf]Data Reporter

Figure 1: Actor
The use case can be defined as follows:

“A use case defines a set of use-case instances, where each instance is a sequence of actions a system performs that yields an observable result of value to a particular actor”
[image: image2.emf]Report Data

Figure 2: Use case

Actors and use cases are joined by an association.

[image: image3.emf]Report Data

(from Data)

Data Reporter

(from Actors)

Figure 3: Actor and use case

Some use cases can be invoked directly by other use cases, either as an extension (optional), or as an inclusion (always occurs). These are documented as <<name>> on the use case association.

[image: image4.emf]Data Reporter

(from Actors)

Key Family

Maintainer

(from Actors)

Maintain Key Family

(from Data)

Retrieve Key Family

(from Data)

<<include>>

Validate Data

(from Data)

Report Data

(from Data)

<<extend>>

Figure 4: Extend and include use cases
C. Classes and attributes

General

A class is something of interest to the user. The equivalent name in an entity-relationship model (E-R model) is the entity and the attribute. In fact, if the UML is used purely as a means of modelling data, then there is little difference between a class and an entity.

[image: image5.emf]Annotation

(from SDMX-Base)

name : String

type : String

url : String

Figure 5: Class and its attributes
Figure 5 shows that a class is represented by a rectangle split into three compartments. The top compartment is for the class name, the second is for attributes and the last is for operations. Only the first compartment is mandatory. The name of the class is Annotation, and it belongs to the package SDMX-Base. It is common to group related artefacts (classes, use-cases, etc.) together in packages. . Annotation has three “String” attributes – name, type, and url. The full identity of the attribute includes its class e.g. the name attribute is Annotation.name.

Note that by convention the class names use UpperCamelCase – the words are concatenated and the first letter of each word is capitalized. An attribute uses lowerCamelCase - the first letter of the first (or only) word is not capitalized, the remaining words have capitalized first letters.

Abstract class

An abstract class is drawn because it is a useful way of grouping classes, and avoids drawing a complex diagram with lots of association lines, but where it is not foreseen that the class serves any other purpose (i.e. it is always implemented as one of its sub classes). In the diagram in this document an abstract class is depicted with its name in italics, and coloured white.

[image: image6.emf]AbstractClass ConcreteClass

Figure 6: Abstract and concrete classes

D. Associations

General

In an E-R model these are known as relationships. A UML model can give more meaning to the associations than can be given in an E-R relationship. Furthermore, the UML notation is fixed (i.e. there is no variation in the way associations are drawn). In an E-R diagram, there are many diagramming techniques, and it is the relationship in an E-R diagram that has many forms, depending on the particular E-R notation used.

Simple association

[image: image7.emf]Concept

(from Concept-Scheme)

Dimension

1 0..*

Figure 7: A simple association

Here the Dimension class has an association with the Concept class. The diagram shows that a Dimension can have an association with only one Concept (1) and that a Concept can be linked to many Dimensions (0..*). The association is sometimes named to give more semantics.

In UML it is possible to specify a variety of “multiplicity” rules. The most common ones are:

•
Zero or one (0..1)

•
Zero or many (0..*)

•
One or many (1..*)

•
Many (*)

•
Unspecified (blank)

Aggregation

Simple Aggregation

[image: image8.emf]Item

ItemScheme

1

1..*

1

1..*

items

Figure 8: A simple aggregate association

An association with an aggregation relationship indicates that one class is a subordinate class (or a part) of another class. In an aggregation relationship, the child class instance can outlive its parent class. To represent an aggregation relationship, draw a solid line from the parent class to the subordinate class, and draw an unfilled diamond shape on the parent class's association end. Figure 8 shows an example of an aggregation relationship between an ItemScheme and an Item.

Composition aggregation
The composition aggregation relationship is just another form of the aggregation relationship, but the child class's instance lifecycle is dependent on the parent class's instance lifecycle. In Figure 9, which shows a composition relationship between a ComponentStructure class and a ComponentList class, notice that the composition relationship is drawn like the aggregation relationship, but this time the diamond shape is filled.

[image: image9.emf]ComponentList

ComponentStructure

1..*

1

1..*

1

grouping

Figure 9: An aggregate association by composition
Association names and association-end (role) names

It can be useful to name associations as this gives some more semantic meaning to the model i.e. the purpose of the association. It is possible for two classes to be joined by two (or more) associations, and in this case it is extremely useful to name the purpose of the association. Figure 10 shows a simple aggregation between DomainCategoryScheme and DomainCategory called items, and another between DomainCategory called hierarchy.
[image: image10.emf]DomainCategoryScheme

DomainCategory

1..*

0..1

1..*

/items

0..*

0..1

+child

0..*

hierarchy

+parent

0..1

0..1

Figure 10: Association names and end names

Furthermore, it is possible to give role names to the association-ends to give more semantic meaning – such as parent and child in a tree structure association.

Navigability

Associations are navigable in both directions. For a data model it is not necessary to give any more semantic than this. However, if there is an intent to implement the model in a database or message structure, it can be useful to identify when the association is not navigable (i.e. there is no intention or necessity to implement a navigation in a particular direction).

[image: image11.emf]A B

Figure 11: One way association

Here it is possible to navigate from A to B, but there is no need (e.g. no functional need) to navigate from B to A using this association.

Inheritance

Sometimes it is useful to group common attributes and associations together in a super class. This is useful if many classes share the same associations with other classes, and have many (but not necessarily all) attributes in common. Inheritance is shown as a triangle at the super class.

[image: image12.emf]IdentifiableArtefact

id : String

name : String

uri : String

uuid : String

Organisation

Figure 12: Inheritance

Here the Organisation is derived from IdentifiableArtefact, which is an abstract superclass. This class inherits the attributes and associations of the super class. Such a super class can be a concrete class (i.e. it actually exists), or an abstract class.

Derived association

It is often useful in a relationship diagram to show associations between sub classes that are derived from the associations of the super classes from which the sub classes inherit. A derived association is shown by “/” preceding the association name e.g. /name.

[image: image13.emf]Component

ComponentStructure KeyFamily

Measure

MeasureDesciptor

1

1

1

1

/grouping

1

1..*

1

1..*

/components

ComponentList

1..*

1

1..*

1

grouping

1

1..*

1

1..*

components

UncodedComponent

uncoded

Figure 13: Derived associations

Note that the multiplicity at the association ends can be made more restrictive in the derived association. In the example above the grouping association is 1..* whereas the /grouping association is 1.

E. Collaboration diagram

A collaboration diagram shows an example of an instance of the classes (an instance of a class is called an object). An instance of a class is class with a unique name.

[image: image14.emf]IMF :

Organisation

 : MaintenanceAgency

BOP_CF :

ConceptFamily

SDDS :

MetadataConceptScheme

Figure 14: Collaboration diagram

Here there is an object of the Organisation class called IMF. In its role as MaintenanceAgency the IMF maintains a MetadataConceptScheme called SDDS and ConceptFamily called BOP_CF.

Sometimes it is not useful to give a name to an object. Here the object is still an instance of the class (e.g. MaintenanceAgency) but there is no name – so it means “any” or “it does not matter which name”.

Objects are joined together using an object link.

