Defining views in model-driven DDI
The notion of a view has a number of definitions in the architecture literature. A widely accepted one is that “a view is a description of the system relative to a set of concerns from a certain viewpoint”[footnoteRef:1]. This definition is also the basis of architecture frameworks such as TOGAF[footnoteRef:2]. 	Comment by lhoyle: Should we have a reference to TOGAF? [1: Rich Hilliard, Views and viewpoints in software systems architecture. First Working IFIP Conference on Software Architecture, San Antonio, February 1999. web.mit.edu/richh/www/writings/hilliard99-ifip.pdf] [2: http://www.opengroup.org/subjectareas/enterprise/togaf]

There are four three possible ways of defining views:
1. As a subset of classes of the model. Classes will be included with all their properties and relationships.
2. As a subset of classes and relationships of the model. Classes will be included with all their properties whereas some relationships can be excluded.
3. As a subset of classes, relationships and properties of the model. Some properties and relationships of the participating classes can be excluded.
4. As a set of classes that are selections, projection or joins of classes of the model. These are the equivalent of views in the relational model defined with SPJ (Select-Project-Join) operators.	Comment by lhoyle: Are we even considering this approach?
Approach 2 is the one that offers the best trade-off between flexibility and simplicity in its definition and maintenance across bindings. With this approach, a view can contain any arbitrary set of classes and only the associations between them.A primary goal of a DDI view is to reduce complexity in the documentation and bindings of the view as compared to the whole standard. At the same time it is desirable to have the maximal degree of compatibility among views. Several views may be applied to a given collection of data through the data’s lifecycle. Ideally metadata accumulated through the lifecycle should move smoothly through the views without loss. Restrictions pose increasing challenges for this ideal among the ways of defining the views.
1. Views allowing no restrictions would meet this ideal, but might grow undesirably large when including all relationships.
2. Restrictions on relationships could lead to loss when a relationship is instantiated in one view but not allowed when the metadata instance is used in another view.
3. Restrictions on properties add even more potential for loss.
4.
Approach 2 is the one that offers the best trade-off between flexibility and simplicity in its definition and maintenance across bindings. With this approach, a view can contain any arbitrary set of classes and only the associations between them. View designers should consider whether a relationship is core to a class when deciding whether to include it. A RepresentedVariable, for example, has a fundamental relationship to a Universe and a ValueDomain. These relationships should always accompany the RepresentedVariable, even if they have optional cardinality.
Using Views in a whole-lifecycle context may require a repository using an overall (“uber”) view of the model to check in and out metadata into views to avoid loss. When information is added to the whole from a view, something like an outer join could be employed, where previously defined relationships are maintained when updating from a view excluding those relationships.
A view should be defined with very broad use case in mind, e.g. methodology, classification, discovery. More specific use cases (e.g. those usually associated with profiles) within the broad category of a view will be addressed in the documentation, e.g. which properties to include, which ones to exclude, how classes in the view should be used, etc. For instance, the documentation could describe two separate use cases for classification management and usage (e.g. coding) within a single classification view; same with sampling and editing/imputation for the methodology view, etc. This separation between profiles/documentation and views reduces the complexity of model management without sacrificing flexibility and functionality.
