[bookmark: h.amm1oayl46tu]XML Binding Specification and Validation
24 November 2015

In-line documentation in the transformation code should reference the rules that are being applied.

	
	Purpose
	Platform Independent Model to Platform Specific Model

	
	Description
	Flattening the Inheritance out of the Platform Independent Model

	
	File Location
	https://bitbucket.org/ddi-alliance/ddi-views/src/235a9c80cbf0956af4629c51a5e3a519a6537e3a/transform/XMLSchema/

	
	File Name
	

	
	Specification
	Validation Criteria
	Step

	1
	Name conventions for classes, properties and relationships must follow the identified naming rules
	Properties and relationships: lowerCamelCase
Classes : UpperCamelCase
	Validate PIM

	2
	The following list of classes, properties and relationships must contain documentation stubs which are not empty
	Property: Cardinality;DataType,Description
Relationship:TargetObject;Description;Source Cardinality;TargetCardinality;RelationshipType
	Validate PIM

	3
	PIM will only contain those packages and functional views flagged for publication
	
	Validate PIM

	4
	Abstract classes which function as extension bases have no properties or non-extension relationships
	1. If (PSM abstract class) properties = NULL
2. if (PSM abstract class) non-extension relationship=NULL
3. if (PSM abstract class) extension relationship=any(0,1)
	Transform
PIM to PSM

	5
	All properties and relationships are moved down the chain of inheritance to concrete classes
	1. if (PIM abstract class properties) = PSM concrete class properties down down the chain of inheritance
2. if (PIM abstract class relationships) = PSM concrete class properties down down the chain of inheritance
	Transform
PIM to PSM

	6
	When non-abstract classes extend non-abstract classes properties and relationships of the extension base are duplicated on the extending class
	1. if (PIM non-abstract class that extends another non-abstract class) = PSM properties are duplicated down the chain of inheritance
2. if (PIM non-abstract class that extends another non-abstract class) = PSM non-extension relationships are duplicated down the chain of inheritance

	Transform
PIM to PSM



	
	Purpose
	Platform Specific Model transformation to XSD

	
	Description
	Production of a set of XSD schemas 

	
	File Location
	https://bitbucket.org/ddi-alliance/ddi-views/src/235a9c80cbf0956af4629c51a5e3a519a6537e3a/transform/XMLSchema/

	
	File Name
	

	
	Specification
	Validation Criteria
	Step

	1
	Normative schema for the library for all packages will be produced
	Existence of schema
	Transform
PSM to XSD

	2
	Convenience (non-normative) schema for each functional view will be produced
	Existence of schema
	Transform
PSM to XSD

	3
	Schemas must be compliant with the schema specification
	????
	PSM Validation

	4
	Schemas must be valid XML
	Check using XML parser
	PSM Validation

	5
	All schemas will be declared in the DDI namespace
	Check the XML namespace attribute in each schema
	PSM Validation

	6
	All schemas will import the XML namespace
	Check the namespace imports for each schema
	PSM Validation

	7
	The library schema will be named DDI_Library.xsd
	Check the schema is correctly named
	PSM Validation

	8
	Each functional view schema will be named DDI_[functional_view_name].xsd
	Check the schema is correctly named
	PSM Validation

	9
	The version of the schema[s] will be indicated in the body of the schema
	Check the schema is correctly versioned
	PSM Validation

	10
	Each enumeration class should be declared as a simple type
	PSM enumerations should match simple type declarations in each schema
	PSM Validation

	11
	Non-xsd primitive data types will be mapped to xsd primitive data types (UML)
	Check simple types in schemas to ensure that no UML primitives are used
	Transform PSM to XSD

	12
	The root element for each schema will be <DDI> with a type attribute containing the name of the functional view or the string library as appropriate
	Check the root element of each schema and make sure the type attribute exists with the correct fixed value for each Functional View and the library
	Transform PSM to XSD

	13
	For each class in the PSM, from the complex types package declare an xsd:ComplexType with child elements for each of the constructs within that complex type
	Compare the complex datatypes in the PSm against declarations in the schema for the correct correspondence
	Transform PSM to XSD

	14
	For each class in the PSM, from the complex datatypes package declare a global element using the xsd:ComplexType for that PSM complex data type
	Compare the complex datatypes in the PSm against declarations in the schema for the correct correspondence
	Transform PSM to XSD

	15
	For each class in other packages (non-complex datatype; these are classes which inherited from AnnotatedIdentifiable in the PIM) of the PSM generate an xsd:ComplexType where properties are expressed as child elements and non-inheritance relationships are expressed as references 
	Compare non-complex datatype classes in the PSM against each schema for the correct correspondence
	Transform PSM to XSD

	16
	Objects inside each Functional View are all declared in the non-normative convenience schema corresponding to that view
	Compare the objects in each PSM Functional View for the correct correspondence in the non-normative corresponding schema
	PSM Validation

	17
	Objects inside Library Packages are included in the normative library scheme
	Compare the objects in the PSM library for the correct correspondence in the normative library schema
	PSM Validation

	18
	Every property and relationship from the PSM for all classes should reflect the correct cardinalities in their xsd form
	Check all the cardinalities for elements and attributes in the schemas against the corresponding construct in the PSM
	PSM Validation



