Creating and Using a Pattern

2016-08-15 - W. Thomas

Role of a Pattern

A Pattern in DDI represents a common, reusable structure to provide consistency in the relationships
between classes which, as a group, relay common activities or structures such as, a collection of classes,
a production process, defining methodology or approach, etc.

The intent of the Pattern is to provide implementers with a consistent representation of classes
representing similar things in a variety of applications. The use of a Pattern lets the modeler apply a
known Pattern and customize it to a particular use by constraining relationships or adding applicable
properties or relationships.

Design Guidelines for Pattern Content
e The package containing the Pattern “Xxxx” should be named XxxxPattern
e The package should contain ONLY classes within the pattern (classes may relate to classes
outside the pattern which can be used directly (without creating a new class)
e Allclasses in the Pattern must be abstract
e C(Classes in the Pattern may inherit from other classes via use of extension base
e C(Classes in the Pattern should not “realize” another class
e Class content should be as limited as possible
o Use Identifiable rather than Annotatedldentifiable
o Limit use of common descriptive properties unless required by the role of the class
(name, usage, etc.)
o Provide usage specific names for other common property types like Date or DateRange
in order to limit possibility of name clashes in realizations (e.g. xxxxDate)

Implementing a Pattern
A Pattern is “realized” by creating a new class containing ALL of the properties and relationships of the
Pattern class PLUS the following relationship:

Name Target Object Description Source Target Relationship
cardinality cardinality type
realizes [Pattern class Uses pattern for | 0..n 1..1 Neither
name] a [Pattern class
name]




Use the following guidelines and refer to “Xxxx” document for detailed information on the use of

Patterns.

e A class may realize more than one class (generally from multiple patterns)

O

O

Example: a single class could have the role of an Design in a Methodology Pattern and a
Member in a Collection Pattern

In replicating content ensure that any common properties have the same data type,
description and role (conflicts should be brought to the attention of the Modeling Team)
Clarify the nature of the multiple roles for the class in the class level documentation

e Carefully replicate all properties making sure to include all inherited properties

O

Note that some inherited properties are overridden by constraints. In this case used the
constrained version of the property
Example: A StrictOrderRelation replicates the following properties and restricts them

Inherited from DataType Cardinality | Restriction

BinaryRelation

totality TotalityType 1.1 [no restriction]

reflexivity ReflexifityType 1.1 Fixed to Anti_Reflexive
symmetry SymmetryType 1..1 Fixed to Anti_Symmetric !
transitivity TransitivityType 1..1 Fixed to Transitive

1 Restricted in to Asymmetric in AsymmetricBinaryRelation then further restricted

e Carefully replicate Relationships including all inherited relationships

O

Retain the use of the relationship name if possible
= |f changed for clarification, note the name of the relationship it represents from
the Pattern class

e Restrict the target object as needed

O

Note that if the Pattern Class requires a specific type (Member, Node, etc.) the selected
Target Class must be of that type either through realization or inheritance

e You may constrain but not relax the source and target cardinalities

e Add the relationship name “realizes” and the appropriate pattern class

e Change extension base from Identifiable to Annotatedldentifiable if needed

O

If the extension base is other than Identifiable, simply add the property of has
Annotation (0..1) Datatype="Annotation” with the description “Provides annotation
information on the object to support citation and crediting of the creator(s) of the
object.”

e Add any additional properties or relationships needed for the specific use of this class.




