Collections/Groups
Draft: 2014-09-05, Technical Committee
Goals:
· Provide standard structures to use as bases for creating collections of objects within DDI that support the following requirements:
· Managed and unmanaged collections
· Unique and non-unique members
· Ordered and unordered members
· Use the available UML classes
· Reflect ISO/IEC 11404 specification
· Provide a set of rules for creating collections as extensions of these standard structures
Proposed:
[bookmark: _GoBack]TC is recommending a small set of collection structures that reflect those currently available in UML. These structures are based on two Boolean dimensions (isUnique, isOrdered). The abstract base for all of these structures is Collection.
	No.
	Unique
	Ordered
	UML
	ISO/IEC 11404
	RDF/OWL
	Smalltalk

	1
	
	
	Bag
	Bag
	Bag
	Bag

	2
	
	X
	Sequence
	Sequence
	Seq
	Indexed Collection

	3
	X
	
	Set
	Set
	
	Set

	4
	X
	X
	Ordered Set
	
	
	Dictionary Set

All collection specifications should indicate their purpose, criteria for membership, construction procedures, and a collection of characterizing operations. In addition the following attributes should be considered for collections [uniqueness and order are implied by the base collection type]:
· Homogeneity – how is it defined for the specific case
· Size (fixed | variable)
· Access method – how values are extracted (direct access method using an index or key | indirect by position or uniqueness)
· Recursive structure – if recursion is supported this would be a Boolean value

Related issues:
· Managed vs. Unmanaged Collections
· Our current use cases cover both managed and unmanaged collections.
· Managed collections require additional administrative metadata and the ability to add, edit, or remove objects from the collection over time. This in turn influences how order is specified within the collection.
· Unmanaged collections may be able to function with a basic identification and, for ordered collections, a simple integer based specification of order
· Does this suggest that for each of the Boolean defined structures above that we have a managed and unmanaged version?
· Definition of order
· Order is defined at the point of inclusion of an object within the collection
· Options for specification are varied:
· A simple numerical ordering of content members (e.g. rdf:ContainerMembershipProperty has instances of the properties rdf:_1, rdf:_2, rdf:_3 …)
· A simple designation of the first member and the rest of the members (e.g. rdf:first, rdf:rest)
· The use of “previous” and “subsequent” on each member specification which supports updating and insertion
· If only one approach is used for defining order it will need to support managed collections but may be overkill for a number of use cases
· Hierarchies within ordered or unordered collections
· Hierarchies can be defined by nesting (a member object with a subordinate member object) or by creating collections of collections
· When the “collection” (either a formal collection or a superordinate member) has meaning within the hierarchy the use of a formal collection results in capturing meaning from two classes of objects (collection and member classes)
· When the levels of the structure have meaning in themselves (e.g. Classification Levels, Geographic Structures, etc.) the use of a formal collection to structure the members allows for attaching level information.
· Simple hierarchies are common in code lists where a “Total” is used to specify the collection as a whole
· Regardless of how described the use of a defined hierarchical collection needs to be able to specify selection of levels, subgroups, and ranges (e.g. a Question may capture occupation at its most discrete values but it may be expressed in a tabular display with both discrete values and subtotals at the various sub-groups or levels.
· Homogeneity
· If we support only homogeneous members within a collection this implies the following:
· The class of the member object must be clearly specified which creating a group
· If a non-nesting approach is used support for collections with no members must be available to allow for irregular hierarchies where a sub-collection may also be the most discrete member of the parent collection
· Homogeneity needs to be defined as the abstract class and/or the specific class when defining membership

Review of current collection requirements based on DDI 3.2
Examples of various combinations
	No.
	Example
	Managed
	Unique
	Ordered

	1
	A collection of variables associated with a subject for a purpose
	
	
	

	2
	A collection of process steps taken to perform a specific activity (retrospective or activity capture)
	
	
	X

	3
	A collection of unique concepts used for a single study
	
	X
	

	4
	A generated index for objects in a collection
	
	X
	X

	5
	A module (i.e. StudyUnit, PhysicalInstance, ResourcePackage, etc.) – These disappear or become Views in DDI4
	X
	
	

	6
	Prescribed set of process steps used to perform an activity of a specific type (prescriptive - reusable)
	X
	
	X

	7
	A collection of geographic locations of a specified type
	X
	X
	

	8
	Classification (Category scheme with ordered contents)
	X
	X
	X

Managed: The collection is used to manage the relationship of objects over time. This requires the ability to use the collection within other objects by reference (i.e. use of a CodeList by a Question or Variable; use of a collection of geographic locations between studies) and the availability of administrative content.
Unique: Member objects can appear only once within the collection.
Ordered: The collection can define the relative order of the member objects.
Types of Collections in Other Systems
A number of systems describe and use various forms of collections. DDI needs to consider these to understand where clear cross-walks exist and where similarities or dissimilarities exist. The spreadsheet CollectionOverview_2014-08-14.xls provides a comparative view of Set Theory, ISO/IEC 11404, UML, OWL/RDF, XML Schema, SQL, Java, Apache Commons Collections, and Smalltalk.
ISO/IEC 11404 basics
Aggregate types common to both ISO/IEC 11404 and UML
· Set (8.4.3)
· Set generates a datatype whose value-space is a set of all subsets of the value space of the element datatype, with operations appropriate to the mathematical set
· Properties: non-numeric, unordered, exact
· Aggregate properties: homogeneous, variable size, uniqueness, no ordering, access indirect (by value)
· Bag (8.4.4)
· Bag generates a datatype whose values are collections of instances of values from the element datatype. Multiple instances of the same value may occur in a given collection; and the ordering of the value instances is not significant
· Properties: non-numeric, unordered, exact
· Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect
· Sequence (8.4.5)
· Sequence generates a datatype whose values are ordered sequences of values from the element datatype. The ordering is imposed on the values and not intrinsic in the underlying datatype; the same value may occur more than once in a given sequence
· Properties: non-numeric, unordered, exact if and only if the element datatype is exact
· Aggregate properties: homogeneous, variable size, no uniqueness, imposed ordering, access indirect (by position)
Unique to ISO/IEC 11404
· Record (8.4.1)
· Record generates a datatype, whose values are heterogeneous aggregations of values of component datatypes, each aggregation having one value for each component datatype, keyed by a fixed field-identifier
· Properties: non-numeric, unordered, exact if and only if all component datatypes are exact
· Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness, access is keyed by field identifier, one dimensional
· Class (8.4.2)
· Class generates a datatype whose values are heterogeneous aggregations of values of component datatypes, each aggregation having one value for each component datatype, keyed by a fixed field-identifier.
· Properties: non-numeric, unordered
· Array (8.4.6)
· Array generates a datatype whose values are associates between the product space of one or more finite datatypes, designated the index datatypes, and the value space of the element datatype, such that every value in the product space of the index datatypes associates to exactly one value of the element datatype
· Properties: non-numeric, unordered, exact if and only if the element datatype is exact
· Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access is indexed, dimensionality is equal to the number of index-types in the index-type list
· Table (8.4.7)
· Table generates a datatype whose values are collections of values in the product space of one or more field datatypes, such that each value in the product space represents and association among the values of its fields. Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations
· Properties: non-numeric, unordered, exact if and only if the field datatypes is exact
· Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is twoRecord
UML types
· Bag
· Definition: (Not Unique, Not Ordered) A Bag is a collection with duplicates allowed. That is, one object can be an element of a Bag many times. There is no ordering defined on the elements of a Bag
· Sequence
· Definition: (Not Unique, Ordered) A Sequence is a collection where the elements are ordered. An element may be part of a Sequence more than once. A Sequence is not a sub-type of Bag. The common super-type of Sequence and Bag is Collection.
· Set
· Definition: (Unique, Not Ordered) A Set is the mathematical set. It contains elements without duplicates.
· Ordered Set
· Definition: (Unique, Ordered) An Ordered Set is a Set, the elements of which are order. As a sub-type of Set it contains no duplicates
Other forms of collections
· Collection (Smalltalk) is used to store objects in groups and has three main structures
· Bag – not unique, unordered
· IndexedCollection – not unique, ordered (sorted or accessible from an integer index)
· FixedSizeCollection
· Array – mixture of object typed
· CompiledMethod
· Bitmap
· ByteArray
· File Handle
· Interval
· String – ordered in an identifiable sequence
· Symbol – subset of String which makes special use of unique character sequences
· OrderedCollection – unlimited size (may shrink or expand as needed)
· Process
· SortedCollection – result of prioritizing the contents of a collection using a sortBlock (defines the sort order of the objects in the collection) allowing objects to be added or removed over time
· Set – unique, unordered
· Dictionary – set of associations with an association for each key whose value may or may not be unique (uses the Magnitude class Association to define objects making up the key/value pair)
· IdentityDictionary
· MethodDictionary
· SymbolSet
· Symbol Set
· Map (Java) – an object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value. Takes the place of the Dictionary class which was a totally abstract class rather than an interface. Contains map entries (key/value pairs).
Structural issues
1. Do we start with an abstract type so new collection types could be created by generation protocols and associated with the abstract class?
2. Membership and sequence are assigned at point of inclusion in a group therefore this is a true reference of a specific type (i.e. simple reference denoting membership, complex reference defining both membership and order).
3. How are sequences defined? One approach is to use a numerical order the other is to designate previous and subsequent. Are different formats used for unmanaged and managed collections?
4. Views are a type of collection and should have a basic standard structure.
5. There are currently two methods for creating hierarchical structures; direct nesting (i.e. Category with a sub-category) and nested groups (i.e. Variable Group containing other Variable Groups). A single consistent approach would be best but may result in a more complex structure for a simple requirement.

