[image: ]

IDE Main Store - Metadata and data storage


[image: ]



[image: ]IDE Process Store – User-based 
processing environment

Introduction
The data warehousing approach we apply is taken from Ralph Kimball, with the implementation following a slightly modified Operation Data Store architecture.
From the database schema fragments shown above our implementation consists of two database:
1. Main Store Database: The permanent holding area for all data and metadata.  Contains all “versions” (changes) that have been made to the data.

2. Process Store Database: A user based storage area for data that is being modified. A copy of the data is moved from the main store to the process store as required. Multiple copies may exist at any given time.
The Main store
Essentially, this database consists of metadata tables which are used to describe the datum that are either imported from source or created / modified as part of most statistical process.
In order to do this data is broken down to a “cell” (datum) level and stored as a string value in a “fact table”. The metadata which is captured around the cell at a minimum describes the basic information known from the incoming dataset, variable (column) name, data type, dataset name. We add additional metadata to provide grouping and ultimately assist in later statistical processing.
[image: https://support.content.office.net/en-US/media/54c47e06-8566-456b-9ebe-a74af6c202a7.png]

The overall solution is designed to support different “fact” structures, however in reality we only have two implemented, a basic single set storage structure termed “fact_x” and a second which can store related datasets “fact_transaction_x”.
Multiple instances of these table structures are used to partition the data, which is done solely to increase performance as different physical storage can be assigned to each partition. Partitioning is applied based on our cii_key (collection_instance_instrument) which roughly equated to the period the dataset is for (monthly, quarterly, bi-annual, annual).
The main store approach isn’t kind to deleting data, so we don’t. Instead each fact has a status assigned to through the change_history table, with new cells being inserted as the facts or their status change. This again helps with performance, but does mean that lots of versions can build up if data is changing frequently – something the standardisation of our statistical processes is designed to reduce.

The Processing Store
This database is designed to be a user isolated environment where processes can be run without increasing the version count of facts (as described above). It enables both the “production” processing and trailing of experimental / incremental improvements to be done within the same system, using the same data, tools, etc, without adversely affecting data held in the main store.
Essentially, a copy of the data that is required for the processing is moved from the main store fact table(s) to the process fact table(s) and associated with a “process”, which in turn is associated with a specific user. Only processes which are designated as “production processes” can then in turn move data back from the process store to the main store.
In combination, the main store / process store approach eliminates the need for using timestamps to track what has changed, as only one production process can act on a dataset  (collection_instance) at any given time.

Data Processing
The “processing” that is done on the collections consist mainly of:
1. Derivations
2. Automated edits
3. Imputation
Where possible automated processing is used, although some manual editing is provided for within the overall system. However to facilitate automated process the system enables the capture of user defined inputs to the set of standard tools which have been integrated into the system. These input are termed configuration items and are held as xml. 
[image: ]
The configuration set(s) are only applied to data held in the processing store. A configuration set will also hold in the instructions to move data to / from the process store.

[bookmark: _GoBack]Reporting 
In order to determine what has occurred when a given configuration set has been applied, OLAP cubes are used to summarise and display the changes between the raw and final data, providing drill through to the actual process that modified a given cell.
The same type of summary information is also available on the main store OLAP cube although this cubes primary purpose to link collections which share common dimensions.

image4.png
N NE

Condiments
Confections
Dairy Products

~ Attribute v Value  ~
1/31/2013 967
2/28/2013 30
3/31/2013 115
1/31/2013 440
2/28/2013 183
3/31/2013 63
1/31/2013 645
2/28/2013 229
3/31/2013 251
1/31/2013 495
2/28/2013 434
3/31/2013 270





image5.png
Fix - Magnitude Error - Raw Materials Stocks |Set Documentation

) Preview XML

Element Name
Nonganft Issue

Attributes
Name

B variabies
B3 historic varisbles

B crieria

5

IND_RawMatStks SNZ_UnitResponse
IND_RawMatStks

(IND_RawMatStks_1>0) and (IND_RawMatStks>100000000) and (IND_RauMatStks/IND_RawMatStks_1)

B B8H

4 Process
>100) and (SNZ_UnitResponse=1

4 Pre-Banft Edit ) ond ENZ Unifesponse=t)
Set non-responding unis to zero B 5 IND_RawMeatStis=round (IND_RawMatStks/1000)1000)
Fix - Magnitude Error - Sales
Fix - Magnitude Error - Purchases and Operating Expenditure | €3 e map IDEIMPUTED, PRE_BANFF_EDIT)
Fix - Magnitude Error - Salaries and Wages
Fix- Magnitude rror - Ra Materials Stocks B comment This edit checks that histori raw material stocks is > 0, aw material stocks are > 100,000,000 and that
Fix- Magritude Error - Finished Goods Stocks the rato of current raw materialstocks over previous raw material stocks s >100.If these three
GST Adjustment

conditions are all met then the survey data for that unit is / 1000,
Fix - Replacing missing values with zero - Sales.

Fix - Replacing missing values with zero - Purchases and Operating Expenditure
Fix - Replacing missing values with zero - Salaries and Wages

Fix - Replacing missing values with zero - Raw Materials Stocks

Fix - Replacing missing values with zero - Finished Goods Stacks

Warning - Period covered not exact





image1.png
variable_library (dbo)

e

(| verstleSbrryype_code
] varshon_same

T vardee

T e e st

] o

| et e

o type_code

instrument_map_admin_group (dbo)

5] ooy
] oo
T
[ ol e

[ et e

|

]

Dslrumenl (dbo) @

5] ey
| e e
| e code

T e s dme
T e and e
[ o e b oo

instrument_map (dbo)

sbr_concept_library (dbo)

e

sr_concept_name
s s tot
s evel_1

shrevel 2

[T

s vl 3

5] ey

ey

T vy

[ ity so_ordrstr
[ sl v

[ vl e code

] s
T s ssd
T deren

T crsvesin b
[ o e
ey

] s llnd
] e e

T pweiber

[ mmen e ot

instrument_reference_map (dbo)

5] cer
5] ey
6] ey

] e
T e

8] wtmey

| ot putod s

| ot i

e offet

frequency_type (dbo)

[ warscion syon_code
[ elstoni, e o

3

3

5] ey me ey
[ freuencyype-code
[ ey type e

collection (dbo)

date (dbo)

(6] dne oy

collection_cell (dbo)

[ e

Da; fe_cycle (data)

(L8] Foie_eyce_key

[ s oo
[ s e

[ s _tcpion

[ o . e by
e kst

Multiple Fact tables wil exist in the Data
schema,

The one shown here is the deafiit
structure, Other knwon instances
include

Fact_transaction - for related data
Fact_aggregate - for aggregate data

Multipl fict tables and table parttioring
is used to Increasing indexing
performarce. & single view s used to

T ke
] s
| mr
|l year
] et yar

5] oy

T cder

] ot
[ cellipe cote
] e
T ol _terpon
] e dne

5] cer

| e e

[ ey om ey
] dion s
|t s
e

] vl e
[ det plcstion st

12

P

fact1 (data)

5] ey

6] ey

5] vy

5] chongehitory ey
| e vabe

(| Fo e eyce ey

] P v o

erest (dbo)

T ot o sude
[ s oot

] e e
1

|

collection_instance (dbo)

o] akey
T ey

[ oo stancesode
[ collcion_istance_type code
] e e

|| refernceperod s e
| reeece_priod snd_doe

e 000

[ coecton e s oo

3

uoi_collection_instance_instrument (dbo)

5] woker
5] ey

fing poriod

<

1 0]

i

collection_instance_instrument (dbo)

A —

provide an access point to the datain

change_history (data)

(5] chara fry ey
| charge e

| oot

] e

] e dne

T e

[ ey oo

] e ne

(8] o key





image2.png
fact1 (data)

9| cii_key

9] md fact2 (data)
| voi K B ciikey

| chang im_key

9)
fact || G| voikey
9]

fact || ]| change_history ey —

Fact ||| Fact_vahue
fact_Ife_cyde_key

fact_value_fioat

Couid have more [fact*] tables in

the futre
fact_transaction1 (data)
9| cii_key
| im ks fact_transaction2 (data) change_history (data)
5] wo{ 5] ke change_histry ey
5] .| 9| m_tey change text
parel| | uoLkey process_code
5] chanf 5] areate user
fact || parene ot aeste_iate
fact || 5] chang_history ey ey
fact || act_value change_type._code
| e cyde ke vows_affectzd
| Foct_value_foat comments
etectve_dte

Could have more [fact_ransaction*]
tables in the futtre




image3.png
. . This is the working copy of the
Processing Store - Working structures current and h‘stor?ca‘ s;ta

1 Current data is updated by each
process_fact_actiy| ocess sien
process_job (dbo) o= g sob_tey P
6] ob_tey 78] votey
e | citey 9| mkey process_fact_transaction |
|| sob_status_coce | iecode EE
I tog_header_tey I vae o] e
| b_started.cote I conment 5] woiker
| sob_competed_dote I istorc_vake 5l oo
I configuraion_root_node I v s b | pwenir0
I rob_comment I oraralvake T icsose
| expected _steps rbr | fact ife_cyde ey | prev i _code
I acksge_vaniabes I prev_te_coe =] vl
| Job_type_coe | istorc i cade | conmen
| aveuentr | value fiost | eronal_vahe
] repedtmt || itorc_vale float ] fot e ey ey
| rob_fots_ate I oinaLvabe fiat | rotorcvoe
| ore focts_stve || istorc_.code
] focts_coun: ] vobe ot
e Sy I P Y
| potoric vl fist
process_step (dbo) Thisis the aud tral of al the
5] step_ter changes made to the current
| jobkey year data
I step.nome
| s vpe code
I et step_fey

step_started_date





