
DDI 4 and Data Structures
Executive Summary
While there were many use cases that have contributed to the development of DDI 4, perhaps data management
and, through it, the evolution of data beyond data collection has been the most compelling one.

In this connection a number of capabilities or, again, features were introduced in DDI 4 that grow data
description beyond what is possible in DDI 3.x.

The purpose of this document is to bring these features together in one place in a format that can be readily
reviewed by the DDI community and its leadership. To this end the document starts with the Summary Table
below. This is followed by the body. In the body the reader will find a short introduction and a series of
examples that illustrate the features called out by the summary.

The Summary Table

Feature DDI 3.3 DDI 4 Comments

Support for NCubes ☑ •
The DDI 4 prototype does not yet support a
dimensional data structure. Something like a
DimensionalViewpoint should be completed soon
though.

Explicit support for BPMN and
ETL platforms • ☑

DDI 4 introduces the DataManagementView. It
strings together business processes in a data
pipeline in line with the GSBPM and GLBPM. It
passes records from a data store between the
business processes. The pipeline need not be linear:
it can have multiple entry and exit points.

In line with BPMN and ETL
support, support for transformation
acts based on standard rules
languages like VTL (SDMX) and
SDTL as opposed to
ComputationActions commonly
used in statistical packages like
SPSS, Stata, SAS and R

• ☑
DDI 4 introduces a MetadataDrivenAction
alongside the DDI 3.x ComputationAction which
can be used to describe rules-driven data
transformations

Represents other record types
besides the UnitDataRecord and
NCubes

• ☑
Leveraging the Collection Pattern, DDI 4 supports
hierarchical data structures like the C struct and
JSON objects.

Introduces new types of
relationships between variables in
support of 21st century data
analysis

• ☑
Also, using the Collection Pattern DDI 4 represents
network relationships between variables and their
concepts in support of qualitative data analysis,
concept maps, and causal data analysis

Represents health data structures
that interleave single and multiple
measures together with their
contexts in line with openEHR1,
HL7 and CIMI “archetypes”

• ☑
In DDI 4 we can use the
InstanceVariableRelationStructure collection to
weave measures and attributes together in complex
hierarchical and network-like data structures

1 EHR = Electronic Health Record

https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model
http://www.ddionrails.org/glbpm/
https://sdmx.org/?page_id=5096
http://c2metadata.gitlab.io/sdtl-docs/
https://en.wikipedia.org/wiki/Struct_(C_programming_language)
https://www.w3schools.com/js/js_json_objects.asp
https://www.openehr.org/
http://models.opencimi.org/cimi_doc/CIMIArchitectureGuide/CIMIArchitectureGuide.html

Supports both legacy and
advanced forms of event
representation

• ☑

Legacy event representation refers to star schemas.
Here events are facts with foreign keys that link the
facts to entities with which the facts are associated.
DDI 3.x uses a RecordRelation construct to
establish relationships between facts and their
entity contexts. In advanced forms of event
representation events and their context are
maintained in business objects specific to each type
of event. There are no tables and no joins. Instead
events come ready to use out of object data stores.
See the example in the Event data section below.

Big data support • ☑

Workflow in DDI 3.x is “retail”. With the addition
of business processes in DDI 4, workflow supports
“wholesale” transformations like the transformation
from a “wide” table to a “skinny” one and vice
versa. That’s because in a DDI 4 business process
inputs and outputs are records, not variables.

More natural support for object-
oriented metadata structures. • ☑

The class oriented development of the DDI 4 model
offers a more direct fit to object-oriented
representations in languages like Java, and even R.
This has the potential to open up operations on
metadata with operators on Collections like “sum”
and “difference”, useful for tasks like
harmonization.

Data Management and Data Structures in DDI 4
Introduction
The initial versions of DDI 2 were designed to describe tabular data structures. With DDI 2, the ability to
describe dimensional structures (NCubes) was added. DDI 3 enhanced the capability of describing hierarchical
record relationships and enhanced the ability to describe the physical layout of these structures. DDI 4 is being
designed to allow for the description of a much wider array of data structures, some of which are described
below.

New tools
DDI 4 will also make use of a couple of new tools to ensure consistency in the way these sorts of relationships
are described.

The Collection Pattern
The Collection pattern is a powerful new tool that allows the description of a collection of objects and their
interrelationships. It can be used to describe a simple ordered or unordered list of objects, or to describe any sort
of interrelationship among members of the collection.
DDI 2 and 3 can describe hierarchies from the top down (this level contains that level…). DDI 4 uses a
RelationStructure to provide a more general network type description, detailing how each member connects to
other members. This allows for descriptions of new structures like conceptual networks or social networks.

2 See Vardigan, Mary DDI TimeLine. IASSIST Quarterly
Vol 37 No 1 (2014): http://www.iassistdata.org/sites/default/files/iqvol371_4_vardigan2.pdf

http://www.iassistdata.org/sites/default/files/iqvol371_4_vardigan2.pdf

ViewPoints
Another new feature of DDI 4 is that of ViewPoints. This tool allows for the description of roles of variables: as
identifiers, measures, or attributes. The examples below will show how this can be useful for data like event
data and can be used to describe the physical layout of aggregate data.

Logical data description
Logical data structure is described in a hierarchy of classes in DDI 4. A DataStoreLibrary is a collection of
DataStores. A DataStore is a collection of LogicalRecords. A LogicalRecord is an ordered list of
InstanceVariables. An InstanceVariable describes a DataPoint. A DataPoint has a Datum. RelationStructures
allow for the description of complex relationships among LogicalRecords within a DataStore and DataStores
within a DataStoreLibrary. A RecordRelation further describes the relationships by allowing the mapping of
InstanceVariables as keys among records.

Data ultimately have a physical representation. In a CSV file, for example, a number is represented by a string
of numerals and possibly some other characters like a period, a comma, a dollar sign, and so on. The physical
data description describes how that physical representation is done at both a record level and a DataPoint level.
These classes can be found in the FormatDescription package.

A PhysicalDataSet formats a DataStore and contains PhysicalRecordSegments. These may have complex
relationships described by a PhysicalOrderRelationStructure. A PhysicalRecordSegment contains DataPoints
which can have complex relationships described by a DataPointRelationStructure. A PhysicalRecordSegment
also has a PhysicalSegmentLayout that describes the details of the physical representation (e.g. is it delimited?
what is the delimiter? What string ends lines? Etc.). A PhysicalSegmentLayout also contains ValueMappings. A
ValueMapping formats a DataPoint (e.g. what decimal separator character does the physical string representing
the value use? Is there a regular expression or a W3C number pattern for that string?)

Multiline rectangular data
It is not uncommon for a simple (logical) rectangular table to be represented physically with multiple lines for
each logical record. This was particularly common when there were length restrictions on physical records
(think Hollerith cards). The DDI 4 physical layout classes can describe these data.

Hierarchical record structures
Hierarchical records and their relationships can be described at both the logical and physical level. At the
logical level, parent-child relationships can be described along with the variables that link parents and children.
The physical level description can delineate how the records are laid out in segments and their order.

Relational structures
Hierarchies are commonly represented as sets of related tables as in a relational database. The same tools that
can describe hierarchical structures can be used to describe a relational structure and can also preserve the
conceptual description of, for example, parent-child relationships.

Networks
A new feature for DDI 4 is the ability to describe relationships more complex than hierarchical ones. An
example would be a network relationship among Concepts. This is a common type of data in qualitative data
analysis or more generally in concept maps. The example below describes a simple conceptual network, defined
by the MS Word synonym relationships among three words. DDI 4 uses three MemberRelations to describe this
network.

MemberRelation
 Source: Concept
 Target: Notion
 Target: Idea
 Semantic: Synonym

MemberRelation
 Source: Notion
 Target: Concept
 Target: Idea
 Semantic: Synonym

MemberRelation
 Source: Idea
 Target: Notion
 Semantic: Synonym

Tall skinny data
Many software platforms have tools to transpose data from “short wide” layouts to “tall skinny” layouts (e.g.
R’s reshape 2 package, SAS Proc Transpose). None do a good job of preserving meaning of variables across
these transformations.

Event data
Event data are sometimes represented in a tall layout, with the unit for the record as an event. Here again the
Viewpoint can be used to have identifiers for the event and for measures in the event. Multiple measure
variables can be described, and each can be grouped with one or more attribute variables that point to
InstanceVariables and ValueMappings metadata.

The table below is arranged as a “wide” table, the sort of table DDI has traditionally been able to describe.

Even
t

Temperatur
e

Systoli
c

Diastoli
c

Postur
e DateTime Patient

1 37 120 80 1 2018-08-04T10:43:42+00:00 1
2 38 2018-08-04T16:23:22+00:00 2
3 38.5 125 83 1 2018-08-05T10:44:53+00:00 1

The same data are shown below in a “tall” format.

Event Value VariablePointer

1 "37" UrnTemperatureValueMapping
1 "120" URNSystolicValueMapping
1 "80" URNDiastolicValueMapping
1 "upright" URNPostureValueMapping
1 "2018-08-04T10:43:42+00:00" URNDateTimeValueMapping
1 "1" URNPatientIDValueMapping
2 "38" UrnTemperatureValueMapping
2 "2018-08-04T16:23:22+00:00" URNDateTimeValueMapping
2 "2" URNPatientIDValueMapping
3 "38.5" UrnTemperatureValueMapping
3 "125" URNSystolicValueMapping
3 "83" URNDiastolicValueMapping
3 "reclining" URNPostureValueMapping
3 "2018-08-05T10:44:53+00:00" URNDateTimeValueMapping
3 "1" URNPatientIDValueMapping

What we have discussed but not yet added to DDI4 is a datatype of pointer to metadata for a variable and its
physical representation, shown above as the VariablePointer variable. To have a machine actionable description
of a general tall table like this, what is needed is not only the logical level variable information for each cell in
the value column, but also the details of each associated physical representation. The column “Value” is not a
variable in the sense of traditional DDI variables.

In the table above, for example, a program would need to know the format of the datetime DataPoints in order
to read it correctly. Note also that there are two types of Unit involved in this example, “event” and “patient”.
For events DateTime is an attribute variable. If patients are of interest, records might have PatientID and
DateTime as record identifiers, with event as an attribute.

More Complex Event Data
More complex event data may involve different types of data for each event. This may involve nested forms of
data, using for example JSON. The Superheroes example in the complex datatypes section below shows how
DDI4 might be used in these instances.

Aggregate data
While not currently in the DDI 4 model, the description of aggregate data will be possible, in part through using
the ViewPoint. The thinking is that dimensions of a data cube can be described as identifiers, variables within
cells of a cube can be described as measures, and additional variables can be assigned to cells as attributes.
A cube can be laid out in a tall fashion with one cell per record. In the following example a two by two cube is
laid out with one row per cell. There are two dimensions: Family, and ContactInFamily. There is one measure:
NumberOfCalls. There are two attributes: Audited, and SinglePerson. ContactInFamily, the primary or
secondary contact person, is nested within Family. This relationship can be described with a
VariableRelationStucture. The top row shows the assignment of variables to ViewpointRoles within a
ViewPoint. The value in each cell is a Code. Associated Categories for ContactInFamily would be 1 = “Primary
Contact”, 2 = “Secondary Contact”.

Identifiers Measures Attributes Viewpoint

Family
ContactInFamil
y

NumberOfCall
s

Audite
d

SinglePerso
n Variables

1 1 5 TRUE TRUE
1 2 2 TRUE FALSE
2 1 6 TRUE TRUE
2 2 1 FALSE TRUE

Single datum
DDI 4 is designed to describe data down to the DataPoint and Datum level. A DataPoint is a container for a
Datum (e.g. a cell in a spreadsheet that could be empty. The Datum is the actual representation of some
measurement. The goal of modeling to this fine-grained level is to be able to attach metadata in data stores that
break data down into single observations, e.g. a data lake.

Complex, or Aggregate DataTypes
In terms of ISO/IEC 11404, an InstanceVariableRelationStructure is able to create "aggregate datatypes". These
aggregate datatypes may be homogeneous if all the component datatypes are the same one, or non-
homogeneous if the component datatypes vary. Aggregate datatypes may be hierarchical or not and they may be
recursive or not. Under IS0/IEC 11404, the InstanceVariableRelationStructure qualifies as a "datatype
generator". For example, the HL7 FHIR (Fast Healthcare Interoperability Resources) EHR is a non-
homogeneous, hierarchical, recursive aggregate datatype. The openEHR archetypes that are one component in
an EHR are non-homogeneous, hierarchical, non-recursive aggregate datatypes.

A “blood pressure” would be an example of such a complex datatype. At the design stage of a study one might
specify that a blood pressure be taken. This is an aggregate structure of two (or more) ConceptualVariables with
at least systolic and diastolic pressures. At the InstanceVariable level there might also be attribute variables
(delineated by a Viewpoint) as part of the aggregate (e.g. patient posture – sitting or recumbent).

Lists or Lists of Lists
There are many examples of list datatypes in data that will need to be described by DDI. R, for example has
atomic vector and list datatypes. CSV on the Web allows for lists in cells of tables. A VariableRelationStructure
can be used to describe a list as a composition of variables (or even sub-lists).

Named Lists of Lists
R, JSON, Python and others also allow for named lists of lists. Internal organization varies (simple sequences
like R named lists, or hash tables for more efficient retrieval), but the concept is the same as a key-value
structure. Here the keys can be directly related to a DDI variable.

Hierarchical Structures

active
age
formed
homeTown
members
memberItem
name
powers
powersItem
secretBase
secretIdentit
y
squadName
Aggregate Datatypes might form a hierarchy. An example might be “Rainfall”, with AnnualRainfall at the top
of the Hierarchy and JanuaryRainfall…DecemberRainfall variables at a lower level.

Superheroes Example
The JSON file below, taken from the MDN web docs page: “Working with JSON”, shows an example of data
with aggregate datatypes. There are 11 keys, shown at right. Most are atomic, traditional variables with basic
datatypes like string, Boolean, numeric. The whole collection might be considered as a “superHeroes” variable.
It forms a set with variables squadName, homeTown, formed, secretBase, active, and members.

The variable “members”, though is an aggregate. It must be described as a list of what we’ll call memberItems.
A memberItem is a set of name, age, secretIdentity, and powers. Roles of each of these component variables
could also be described with a ViewPoint.

The variable powers is, in turn a list of something we’ll call PowersItems. PowersItems can be described itself
as a codelist.

The ability in DDI4 to describe complex datatypes like member will allow metadata to quickly adapt to
“schemaless” practices, yet still provide the ability to attach important metadata.

SuperHeroes JSON file
from https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
 {
 "squadName": "Super hero squad",
 "homeTown": "Metro City",
 "formed": 2016,
 "secretBase": "Super tower",
 "active": true,
 "members": [
 {
 "name": "Molecule Man",
 "age": 29,
 "secretIdentity": "Dan Jukes",
 "powers": [
 "Radiation resistance",
 "Turning tiny",
 "Radiation blast"
]
 },
 {
 "name": "Madame Uppercut",
 "age": 39,
 "secretIdentity": "Jane Wilson",
 "powers": [
 "Million tonne punch",
 "Damage resistance",
 "Superhuman reflexes"
]
 },
 {
 "name": "Eternal Flame",
 "age": 1000000,
 "secretIdentity": "Unknown",
 "powers": [
 "Immortality",
 "Heat Immunity",
 "Inferno",
 "Teleportation",
 "Interdimensional travel"
]
 }
]
}

Metadata Processing
DDI 4 has been developed as a set of interrelated classes. This offers a natural fit to object-oriented
representations of metadata that have built-in validation of cardinalities and datatype as well as functions that
can search for existence of referenced objects both in local and distributed repositories. An object-oriented
approach also offers the possibility of developing operators that work directly on the metadata objects. Two

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

collections could be merged with a “sum” operator. The difference between two collections (e.g. two
CodeLists) could also be computed with a “difference” operator. Changes between two objects of the same type
could also be computed directly.

	Executive Summary
	Data Management and Data Structures in DDI 4
	Introduction
	New tools
	The Collection Pattern
	ViewPoints
	Logical data description
	Logical data structure is described in a hierarchy of classes in DDI 4. A DataStoreLibrary is a collection of DataStores. A DataStore is a collection of LogicalRecords. A LogicalRecord is an ordered list of InstanceVariables. An InstanceVariable descr...

	Multiline rectangular data
	Hierarchical record structures
	Relational structures
	Networks
	Tall skinny data
	Event data
	More Complex Event Data
	Aggregate data
	Single datum
	Complex, or Aggregate DataTypes
	Lists or Lists of Lists
	Named Lists of Lists
	Hierarchical Structures
	Superheroes Example
	SuperHeroes JSON file

	Metadata Processing

