

	SC No 60402.2008.001-2012.057 /
SDMX Technical Consultancy: Task 3

Survey Data Management and Combined use of DDI-SDMX
SDMX Constructs

	Version 1.0 - 14/06/2013

	Project
	SC No 60402.2008.001-2012.057 Lot 1/SDMX Technical Consultancy

	Author
	CN
	Chris Nelson
	Senior Consultant

	
	AG
	Arofan Gregory
	Senior Consultant

	SC No 60402.2008.001-2012.057 Lot 1/SDMX Technical Consultancy
	

	
	
	

	

[bookmark: _Toc258842567]Revision History

	Version
	Date
	Author
	Reviewed by
	Description

	1.0
	14/06/2013
	CN/AG
	
	Final

DDI-SDMX Working Together
SDMX Structural Metadata
Contents
1	Scope	4
1.1	Introduction	4
1.2	Use Case	4
1.3	Process Scenario	5
2	Using the DDI Standard	10
2.1	Stage 1: Describing Input Unit-Record Data	10
2.2	Stage 2: Data Processing and Cleaning	22
2.3	Stage 3: Data Derivation	24
2.4	Stage 4: Tabulation	25
3	DDI and SDMX “Handshake”	29
3.1	Summary	29
3.2	DDI and SDMX Multi-Dimensional Data Structure Models	30
3.3	DDI NCube Data Set	34
4	Using the SDMX Standard	35
4.1	Introduction	35
4.2	Using the SDMX Information Model	36
4.3	Stage 5 - The Dissemination Use Case	37
4.4	Dissemination Service	39
5	Annexes	44

[bookmark: _Toc360395705]Scope
[bookmark: _Toc360395706]Introduction
This document provides an example of how DDI – Lifecycle and SDMX can be used together to support the process of statistical production from the point where data collection is complete, to the reporting and dissemination of statistical tables. The example is based on the Labour Force Survey as collected and produced by ISTAT. To illustrate this example, schematics are provided of the needed data and metadata at each stage. After the business example, we illustrate how the standards are used at each stage, and provide examples of the XML for each of the metadata objects. The following section of this document shows the mappings between the standards which occur at the point where the tables are produced (Tabulation), before being reported and disseminated, which is the point where DDI “hands off” to SDMX.
The intention of this document is to help people who are looking at implementing these standards throughout the statistical production lifecycle understand how they can be used, and how the standard metadata in DDI relates to the metadata and data in SDMX. The example provided is not comprehensive, but should help to provide the context within which each of the standards is useful. The example is intended to be very general – while some statistical offices are now using the Generic Statistical Business Process Model (GSBPM) and the Generic Statistical Information Model (GSIM), others are not. We have not based this document on those standards, to make it as broadly applicable as possible. Despite this, the examples provided here will also serve as useful input into the emerging implementation of GSBPM and GSIM based on the use of DDI and SDMX.
[bookmark: _Toc360395707]Use Case
The use case is the Labor Force Survey and the starts with the survey data (see 2012-057-Marking up the Labour Force Survey in DDI Lifecycle_1_0.docx).
The disseminated data tables taken as input to this project can be found at
http://epp.eurostat.ec.europa.eu/portal/page/portal/employment_unemployment_lfs/data/database
The actual tables used are lfsq_agan and lfsq_egised.

[bookmark: _Toc360395708]Process Scenario
Overall Scenario
[image:]
This diagram shown the “handshake” between DDI and SDMX is when the DDI micro data are processed into Indicators. The structure of these indicators (dimensionality and coding schemes used) can be described in a DDI system by the NCube model and in SDMX by the Data Structure Definition Model.
GSBMP
The GSBPM processes covered by this project are shown in the picture below.

The high level model constructs (based on the constructs in the GSIM 1.0 model) and the processes using these constructs are as follows.
Stage 1 – Input Data Received
The LFS survey has been conducted, and the collected data has been compiled. This includes information about the survey and questions used to collect the data, as well as both the data itself and the structural metadata about the data, used for processing and analysis.
[image:]
A Survey is targeted at a specific Population and comprises Questions. A Question may be linked to a Variable which gives a conceptual meaning (Concept) and the valid set of responses that are allowed (Category Scheme and contained Category). Note that there is clearly a possibility that the response to the Question may be just free text or a number.
The output from the Survey is a Unit Record Data Set comprising one for each respondent for a set of Variables. The data set comprises a set of Data Items making up the records.
[bookmark: _Toc351115219]Stage 2: Data Processing and Cleaning
Now that the data has been collected, it needs to be validated and cleaned. There are several processes which go on here: validation occurs, and outlying values are edited out. There may be re-coding of some of the raw input values to convert textual responses to coded ones, etc. Non-response may require some additional micro-edits. The new metadata generated at this stage includes both documentation of methods and related information about the process, and the code for executing the process.
[image:]
The Editing Process can comprise a variety of functions such as Validation, Outlier Trimming, Recodes, and editing for Non Response. The Editing Process (like all other processes in this example of the flow of data between the production stages) consists of a description of the process (Process Description) and the actual program code used in a statistical package or other software environment (Executable Code).
[bookmark: _Toc351115220]Stage 3: Data Derivation
In order to produce a tabulation, new variables may need to be calculated from the existing variables. This will depend on the type of table being produced, but will involve the creation of new variables, possibly the introduction of new classifications (codes, categories) to represent them, and possibly new concepts (typically refinements or combinations of the concepts used initially). There will also be descriptions and code for executing the derivation processes.
[bookmark: _Toc351115221]Stage 4: Tabulation
This stage involves the definition of the tables to be produced, including their structural definition, the creation of a new aggregate data set, and a description and code for the tabulation process. The resulting tabulated data will then be validated, which requires a description and executable code for this processing, and may result in edits to the microdata being tabulated.
The variables from the processed input data are used to populate dimensions, attributes, and measures. Measures are calculated from a set of dependent and independent variables by the tabulation process.
[image:]
The result of a Tabulation is an Aggregate Data Set structured according to a Dimensional Structure Definition. The Dimensional Structure Definition defines the Dimensions comprising the Key Structure, the Attributes and the Measures, each of which takes its semantic and representation from a Variable.
The Aggregate Data Set comprises statistical Series, each Series has a Key (structured according to the Key Structure), Attribute values, and Observation values.
[bookmark: _Toc351115222]Stage 5: Dissemination and Reporting
This stage does not result in the creation of new metadata, but is simply the process of transmitting and otherwise disseminating the tables created in Stage 4.
[bookmark: _Toc351115223][bookmark: _Toc360395709]Using the DDI Standard
For many of the GSBPM steps identified in our scenario, DDI Lifecycle is an appropriate standard for encoding the metadata involved. We will go through each stage, from describing the input data set, recording information about the processes themselves, and then through the derivation of variables and tabulation of the data.
[bookmark: _Toc351115224][bookmark: _Toc360395710]Stage 1: Describing Input Unit-Record Data
DDI Lifecycle works by describing the data at two levels: at the level of the collection cycle itself, where lots of general information can be recorded, and also at the variable level, regarding each field within each data record. The majority of the metadata will be at this lower level.
For the purposes of our example, we will be using only a small subset of the variables collected in the core LFS survey, but all of the variables (more than a hundred just in the core set) would be described in the same way.
First, we will look at the higher-level metadata, and then proceed to the variable-level metadata.
Metadata at the Collection Cycle Level
In DDI, the collection cycle is expressed using a high-level element called a “Study Unit”. The terminology may not be very familiar, coming from the domain of social and economic research, but each cycle of data collection for a survey is packaged into a Study Unit.
The Study Unit will be given a set of identifying information: an identifier, an agency, and a version (as the collection cycle progresses and more metadata is added, the version number can be used to track the changes in the collection cycle’s metadata.)
For all examples here, we will remove the namespace qualifiers, so that the XML is more readable, but in the attached XML file, the namespace qualifiers are included. We will provide content in English, even though our example could be in any number of languages throughout Europe. Content will be abbreviated.
The start tag for a Study Unit looks like this:
<StudyUnit id=”LFS2000” agency=”istat.it” version=”2.0.0”>
Directly inside the Study Unit are a large number of fields which can be provided, but we will select only a few for our example: Citation, Abstract, UniverseReference, SeriesStatement, and Purpose.
The study-level section of the Study Unit will look like the following:
<StudyUnit id="LFS2000" agency="istat.it" version="2.0.0">
	<Citation>
		<Title>Labour Force Survey for Italy, 2000</Title>
		<Creator>ISTAT</Creator>
	</Citation>
	<Abstract>
<Content>The Labour Force Survey is produced to measure...</Content>
	</Abstract>
	<UniverseReference>
		<Scheme>
			<ID>LFS01</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.3.3</Version>
		</Scheme>
		<ID>LFSUniv01</ID>
		<Version>1.3.0</Version>
	</UniverseReference>
	<SeriesStatement>
		<SeriesName>Labour Force Survey</SeriesName>
		<SeriesDescription>The Labour Force Survey is
collected...</SeriesDescription>
	</SeriesStatement>
	<Purpose>
<Content>The purpose of the Labour Force Survey...</Content>
	</Purpose>

These elements are used as follows:
The Citation element is used to provide titles and publication information about the Study Unit. Unless (and until) the microdata are released in some form, this is not a very important set of information, but would typically be completed by the archive or safe center which provides access to the microdata.
The Abstract element provides a simple description of what the data set contains. Again, this may not be needed this early in the data production process, and could be added later if desired.
The UniverseReference is required in DDI lifecycle, and points to a “scheme” of Universes (which we will discuss below). In this case, the Universe will be the adult population of Italy.
The SeriesStatement element is used to describe how this cycle of data collection fits into the overall on-going survey. This may not be important information within the data producer’s agency, but could be added later before the data are directly accessed by users. Similarly, the Purpose element may be added at a later point, and would describe the public and policy requirements which are the reason the survey itself is conducted.
Following these study-level fields, we have a set of packages of metadata, each of which corresponds to the major stages of the data production cycle. These packages are termed “modules” in DDI. There are several possible modules, and we will be using several of them to describe the raw input data. The list includes:
· The “Conceptual Components” module: describes concepts and universes
· The “Logical Product” module: describes variables and their representations (classifications included), and how they are logically grouped into records
· The “Physical Data product” module: describes the structure of data sets
· The “Physical Instance” module: describes the actual collected data files
Each of these modules is versioned as the cycle of data production proceeds, and their contents are modified. In our example, we are only now describing the input data set, so we will only use a sub-set of the modules. Modules contain “schemes” which are lists of metadata items grouped together because they are of the same type, and are used for the same purpose. It is typical to re-use these schemes of metadata across the different cycles of data collection, so sometimes they are stored in special packages called “Resource Packages”, instead of being placed directly into the Study Unit. The Study Unit would simply reference them. For the purposes of simplicity, however, we will show the schemes being directly placed inside the Study Unit.
The first module we will need to use to describe the input data set is the “Conceptual Components” module. It contains Universe Schemes and Concept Schemes. The requirement in DDI Lifecycle is that we always have at a minimum a single top-level Universe for the entire Study Unit (we can also have sub-universes attached to variables, but this is not always done.)
What we will see in the DDI file is as follows:
 <UniverseScheme id="LFS01" version="2.3.3" agency="istat.it">
 <Universe id="LFSUniv01" version="1.3.0">
 <UniverseName>LFS Top-Level
Universe</UniverseName>
 <Label>Adult population in
 Italy</Label>
 </Universe>
 </UniverseScheme>

You will notice that again the scheme has an id, an agency, and a version number. If you look above to the UniverseReference element at the Study Unit level, you will see that the scheme is referenced from there, as well as the single Universe element it contains: “LFSUniv01”.
Logical Metadata at the Variable Level
Next, we would have a scheme containing all of our concepts. For the purposes of our example, we are using a small set of variables, each associated with a single concept. The selected set of concepts is as follows:
· Time Period
· Geography
· Sex
· Education Level
· Occupation
· Date of Birth
· Nationality
These concepts would also be listed together in their ConceptScheme element:
<ConceptScheme id=”LFS-CONCEPTS” agency=”istat.it” version=”2.0.0”>
	<Concept id=”SEX” version=”1.0.0”>
		<ConceptName>Sex</ConceptName>
	</Concept>
	<Concept id=”GEO” version=”1.0.0”>
		<ConceptName>Geography</ConceptName>
	</Concept>
	</Concept>
	<Concept id=”DATE_OF_BIRTH” version=”1.0.0”>
		<ConceptName>Date of birth</ConceptName>
	</Concept>
	<Concept id=”NATIONALITY” version=”1.0.0”>
		<ConceptName>Nationality</ConceptName>
	</Concept>
	<Concept id=”EDUCATION_LEVEL” version=”1.0.0”>
		<ConceptName>Education Level</ConceptName>
	</Concept>
	<Concept id=”OCCUPATION” version=”1.0.0”>
		<ConceptName>Occupation</ConceptName>
	</Concept>
</ConceptScheme>

Note that the concepts will later appear expressed as an SDMX concept scheme, but will have the same identifiers and names – the metadata is not dependent on the standard used to encode it – metadata such as concepts are typically defined and managed within their own systems inside a data producing organization.
We could have a description of the questionnaire used to collect the input data in the next module, the “Data Collection” module, but we will not include that here. We will come back to the Data Collection module when we start describing the processing of the data.
The next module we need to describe the input data set is the “Logical Product” module, which holds four things we will need: the description of Variables, the description of Codes, the description of Categories (these are not like the ones in SDMX – they are the units of meaning associated with the Codes), and the Logical Record.
The Logical record description comes first. It is contained in an element called DataRelationship, which can be used to document very complicated data structures at a logical level. We will be using for a simple purpose, however: to group our Variables together into a single record, at the logical level (that is, distinct from how they are arranged in the physical data files).
The DDI XML looks like this:
<DataRelationship id=”LFS_Input_DR” version=”1.0.0”>
	<LogicalRecord hasLocator=”false” id=”LFSLRec”>
		<VariablesInRecord allVariablesInLogicalProduct=”true”/>
	</LogicalRecord>
</DataRelationship>

This seems a bit complicated, but it is fairly easy to understand. The Logical Record we are describing has an element inside it which could list out all the variables we are using, but instead simply tells us, with the “allVariablesInLogicalProduct” attribute, that every Variable listed in the local LogicalProduct module is part of the logical record (see below). The “hasLocator” attribute is set to false, because there is no variable in the data set which indicates that there are records of different types (we only have records of one type).
Next we have the classifications and codelists which are used to populate the Variables. Rather than provide a lengthy XML example, it is easier to illustrate how these work with a small example.
Code Schemes have a set of meanings (categories) each of which has an assigned code. The Variable will reference a codelist (in DDI terms, a CodeScheme). The CodeScheme references a CategoryScheme which holds the meanings of the codes. Each Code within the CodeScheme references a single Category. This may seem a bit complicated, but it allows the same set of meanings – categories – to be recoded as many different ways as needed, while still showing that the different codes all share a single meaning.
The DDI Lifecycle description for a CodeScheme and a CategoryScheme look like this:
<CategoryScheme id="CATS_1" agency="ISTAT.IT" version="1.0.0">
 <Category id="Cat_1">
 	 <Label>Yes</Label>
 </Category>
 <Category id="Cat_2">
 	 <Label>No</Label>
 </Category>
 </CategoryScheme>

 <CodeScheme id="CODS_1" agency=”ISTAT.IT” version=”1.0.0”>
	<CategorySchemeReference>
		<ID>CATS_1</ID>
	<IdentifyingAgency>ISTAT.IT</IdentifyingAgency>
	<Version>1.0.0</Version>
	</CategorySchemeReference>
	<Code isDiscrete="true">
		<CategoryReference>
		<ID>Cat_1</ID>
		</CategoryReference>
		<Value>1</Value>
	</Code>
	<Code isDiscrete="true">
		<CategoryReference>
		<ID>Cat_2</ID>
		</CategoryReference>
		<Value>2</Value>
	</Code>
</CodeScheme>

The CategoryScheme is very simple – it holds two Category elements, each given a label (“Yes” and “No”). It has the usual scheme administrative fields (id, agency, and version). The CodeScheme is broken into two major sections – a CategorySchemeReference (supplying the ID, Agency, and Version fields of a CategoryScheme) and then a set of Codes, each one having a value, and a reference to a single Category. Here we see that the Code with a Value of “1” references the Category with a Label of “Yes”, and the Code with the Value of “2” references a Category with a Label of “No”.
There are other types of representations in DDI as well, for Variables with different values. We will look at these when we consider the Variables, next.
Variable Schemes are the last part of the Logical Product module which we will use. We have identified a small set of variables, as listed above when we included the concepts. They are:
· Time Period
· Geography
· Sex
· Education Level
· Occupation
· Date of Birth
· Nationality
These variables may have been processed when the input data set was prepared – this is often the case when the question on a questionnaire does not capture the response in the form in which it is included in the data set. Text answers are often coded, for example, before the input data set is processed
In our example, all of our Variables are coded except for Time Period, which holds an ISO-conformant date. The VariableScheme will look like this in our DDI XML:
<VariableScheme id=”LFS_Vars” agency=”istat.it” version=”1.0.0”>
	<Variable id=CASE_ID_VAR” version=”1.0.0”>
		<VariableName>Case Identifier</VariableName>
		<Representation>
			<TextRepresentation/>
		</Representation>
	<Variable>
	<Variable id=”TIME_PEIOD_VAR” version=”1.0.0”>
 <VariableName>Time Period</VariableName>
 <Description>The reference period for the response
data.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>TIME_PERIOD</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <DateTimeRepresentation type="Date"
blankIsMissingValue="true" />
 </Representation>		
 </Variable>
	<Variable id=”GEO_VAR” version=”1.0.0”>
 <VariableName>Geography</VariableName>
 <Description>The place of residence of the
respondent.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>GEO</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <CodeRepresentation blankIsMissingValue="true">
 <CodeSchemeReference>
 <ID>CL_GEOGRAPHY</ID>
 <IdentifyingAgency>istat.it</IdentifyingAgency>
 <Version>2.0.0</Version>
 </CodeSchemeReference>
 </CodeRepresentation>
 </Representation>
	</Variable>
	<Variable id=”SEX_VAR” version=”1.0.0”>
 <VariableName>Sex</VariableName>
 <Description>The reported sex of the
respondent.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>SEX</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <CodeRepresentation blankIsMissingValue="true">
 <CodeSchemeReference>
 <ID>CL_SEX</ID>
 <IdentifyingAgency>istat.it</IdentifyingAgency>
 <Version>2.0.0</Version>
 </CodeSchemeReference>
 </CodeRepresentation>
 </Representation>
	</Variable>
	<Variable id=”EDUCATION_LEVEL_VAR” version=”1.0.0”>
 <VariableName>Education Level</VariableName>
 <Description>The degree of educational attainment of the
respondent.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>EDUCATION_LEVEL</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <CodeRepresentation blankIsMissingValue="true">
 <CodeSchemeReference>
 <ID>CL_EDUCATION_LEVEL</ID>
 <IdentifyingAgency>istat.it</IdentifyingAgency>
 <Version>2.0.0</Version>
 </CodeSchemeReference>
 </CodeRepresentation>
 </Representation>
	</Variable>
	<Variable id=”OCCUPATION_VAR” version=”1.0.0”>
 <VariableName>Occupation</VariableName>
 <Description>The respondent’s occupation.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>OCCUPATION</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <CodeRepresentation blankIsMissingValue="true">
 <CodeSchemeReference>
 <ID>CL_OCCUPATION</ID>
 <IdentifyingAgency>istat.it</IdentifyingAgency>
 <Version>2.0.0</Version>
 </CodeSchemeReference>
 </CodeRepresentation>
 </Representation>
	</Variable>
	<Variable id=”DATE_OF_BIRTH__VAR” version=”1.0.0”>
 <VariableName>Date of Birth</VariableName>
 <Description>The birth date of the respondent.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>AGE</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <DateTimeRepresentation type="Date"
blankIsMissingValue="true" />
 </Representation>		
	</Variable>
	<Variable id=”NATIONALITY_VAR” version=”1.0.0”>
 <VariableName>Nationality</VariableName>
 <Description>The country of which the respondent is a
citizen.</Description>
	 <ConceptReference>	
		<Scheme>
			<ID>LFS-CONCEPTS</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>2.0.0<Version>
		</Scheme>
	 <ID>NATIONALITY</ID>
	 <Version>1.0.0</Version>
	 </ConceptReference>
 <Representation>
 <CodeRepresentation blankIsMissingValue="true">
 <CodeSchemeReference>
 <ID>CL_COUNTRY</ID>
 <IdentifyingAgency>istat.it</IdentifyingAgency>
 <Version>2.0.0</Version>
 </CodeSchemeReference>
 </CodeRepresentation>
 </Representation>
	</Variable>
</VariableScheme>

What we see here is a bit more complicated than earlier examples, because we record more metadata about our variables than we do for some other types of items.
Each Variable has the usual maintenance information (id and version), and is given a name (a human-readable string). Also, a brief description can be included as we have done here, although that is not required (definitions might be stored in a separate system).
Following this, we have a reference to one of the Concepts in our Concept Scheme example. This reference is made by first supplying the id, agency, and version of the Concept Scheme, and then the id and version of the specific Concept being referenced.
Following this, we have the representation of the variable. This is, in the case of Time Period, a Date, and for the Case Identifier, a text string. Date of Birth is expressed as a Date. In all other cases it is a reference to a Code Scheme. In all cases it is stated that a blank in the data is a missing value (this is not always the case, but we have assumed that it is for our example).
Physical Metadata at the Variable Level
Now that we have described the logical contents of our input data file, we will need to describe how the logical content is related to the physical data actually stored in the data file. In our example, we will assume that the data is stored in an ASCII file with comma-separated values. We can understand the data file like this:
	Case ID
	Geography
	Time Period
	Sex
	Education Level
	Occupation
	Date of Birth
	Nationality

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Each cell would contain the appropriate values – either an identifier (for Case ID), a Date (for Time Period) or a code from the codelist appropriate for each variable. Variables are columns, and cases are rows.
We will need first to describe the structure of our data file, and then give some information about the actual data instance – the location of the file, etc. To do this, we will use the Physical Data Product module (for the description of the file structure) and the Physical Instance module (for describing where the file is located, etc.)
We start with the PhysicalDataProduct element, representing the module:
<PhysicalDataProduct id=”LFS_PDP” agency=”istat.it” version=”1.0.0”>
…
</PhysicalDataProduct>

Inside of this, we will have two element – a PhysicalStructureScheme element, and a RecordLayoutScheme element. The PhysicalStructureScheme element references the LogicalProduct which we will use to draw our Variables from, and includes some other useful information:
<PhysicalStructureScheme id=”LFSPSScheme” agency=”istat.it” version=”1.0.0”>
	<PhysicalStructure id=”LFSPStruc” version=”1.0.0”>
		<LogicalProductReference>
			<ID>LFS_LP</ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>1.0.0</Version>
		</LogicalProductReference>
		<Format>Delimited ASCII (CSV)</Format>
		<GrossRecordStructure numberOfPhysicalSegments=”1”>
			<LogicalRecordReference>
				<ID> LFSLRec </ID>
			</LogicalRecordReference>
		<PhysicalRecordSegment id=”LFSPRS”
hasSegmentKey="false" segmentOrder="1"/>
		</GrossRecordStructure>
	</PhysicalStructure>
</PhysicalStructureScheme>

There is quite a lot being done by the PhysicalStructure element. First we have a reference to the LogicalProduct element which holds the description of our Variables. Then the Format element tells us we have an ASCII CSV file. The GrossRecordStructure element first references the LogicalRecord from our LogicalProduct, and then binds it to a PhysicalRecordSegment. Since we only have one type physical record, we do not need to specify a segment key (this is for linking different types of records) and since we only have the one segment, it is the first one, as we see in the segmentOrder attribute.
This part of the DDI was designed to be able to describe very complex types of logical records, and how they are linked with each other and how they are stored. For our simple example, we will not need to provide much information here – what is shown is basically the minimum.
Next we will have a more detailed description of how our physical record relates to our logical record, variable by variable. This is found in the RecordLayoutScheme element:
<RecordLayoutScheme id=”LFSRLScheme” agency=”istat.it version=”1.0.0”>
	<RecordLayout id=”LFSRL” version=”1.0.0”>
		<PhysicalStructureReference>
			<Scheme>
				<ID> LFSPSScheme </ID>
				<IdentifyingAgency>istat.it
</IdentifyingAgency>
				<Version>1.0.0</Version>
			</Scheme>
			<ID>LFSPStruc</ID>
			<Version>1.0.0</Version>
			<PhysicalRecordSegmentUsed>LFSPRS
			</PhysicalRecordSegmentUsed>
		</PhysicalStructureReference>
		<CharacterSet>ASCII</CharacterSet>
		<ArrayBase>1</ArrayBase>
		<DefaultVariableSchemeReference>
			<ID> LFS_Vars </ID>
			<IdentifyingAgency>istat.it</IdentifyingAgency>
			<Version>1.0.0</Version>
		</DefaultVariableSchemeReference>
		<DataItem>
			<VariableReference>
				<ID>CASE_ID_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>1</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>TIME_PERIOD_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>2</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>GEO_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>3</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>SEX_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>4</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>EDUCATION_LEVEL_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>5</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>OCCUPATION_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>6</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>AGE_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>7</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
		<DataItem>
			<VariableReference>
				<ID>NATIONALITY_VAR</ID>
				<Version>1.0.0</Version>
			</VariableReference>
			<PhysicalLocation>
				<Delimiter>,</Delimiter>
				<ArrayPosition>8</ArrayPosition>
			</PhysicalLocation>
		</DataItem>
	</RecordLayout>
</RecordLayoutScheme>

The RecordLayout is made up of a top section, which provides some basic properties, and then a set of DataItem elements, each referencing a logical variable, and indicating where it appears in the physical file.
The top section first references the PhysicalStructure and segment which we described in the PhysicalStructure element. Then we state that the character set is ASCII, and that we will start numbering our arrays at 1 (in the ArrayBase element). Then we use the DefaultVariableSchemeReference element to point to our Variable scheme for LFS – this means we don’t have to repeat the Scheme identifying fields for each of our data items, but we can simply point to the specific variable within the default scheme.
Then, for each Variable found in our physical record, we have a DataItem element, which references a Variable element, states that the delimiter is a comma, and gives the position of the data item within the record, counting up from 1 (in the ArrayPosition element).
We now have all the structural information we need to understand how to read our data file, and which columns hold which variables.
Describing the Data File
The only information we need now is basic: the location of the file, and similar related metadata. This is done using a Physical Instance module:
<PhysicalInstance id=”LFSPhyInst” agency=”istat.it” version=”1.0.0”>
	<RecordLayoutReference>
			<Scheme>
				<ID> LFSRLScheme</ID>
				<IdentifyingAgency>istat.it
</IdentifyingAgency>
				<Version>1.0.0</Version>
			</Scheme>
			<ID>LFSRL</ID>
			<Version>1.0.0</Version>		
	</RecordLayoutReference>
	<DataFileIdentification>
		<URI>https://www.istat.it/....</URI>
	</DataFileIdentification>
</PhysicalInstance>

For our example, we have used a very simple description of the data file – we give it an identifier and version, and then we point to the RecordLayout element where its structure is described. Then we provide a simple URL giving the location of the file. It is possible also to provide other types of identifiers for the data file in DDI, but we have chosen not to include these for our example.
A Note on Tools
There is a large amount of metadata in this part of the DDI, especially when it comes to describing physical layouts. It is almost always the case that this very detailed part of DDI Lifecycle is worked with directly: commercial and open-source tools exist for going to and from many popular statistical processing packages such as SAS, SPSS, Stata, R, and others. While the descriptive study-level and logical variable-level metadata may need to be authored by a human being, much of this information can be mined programmatically from existing database formats.
[bookmark: _Toc351115225][bookmark: _Toc360395711]Stage 2: Data Processing and Cleaning
When we use DDI Lifecycle to describe data processing, we will be working with the Data Collection module. It may seem counter-intuitive that data processing is stored in the module which corresponds to the data collection part of the lifecycle, but when we consider that many software tools such as Blaise, designed to provide computer-assisted questionnaire functionality, actually are capable of starting the data processing even as the questionnaire responses are collected, it begins to make a bit more sense.
A good example of early processing is coding and re-coding of variables. Often, this work is performed as part of data collection activities, before the input data set is passed on for cleaning and other such operations.
Our Data Collection module looks like this:
<DataCollection id=”LFSDC” agency=”istat.it” version=”1.0.0”>
…
</DataCollection>
For describing all sorts of data processing, the DataCollection element contains an element termed a ProcessingEvent.
Let’s assume for our example that we have a process running in a statistical package to identify and trim outliers, as part of the data cleaning. We know that we have a sufficient description of our input data file to render the DDI metadata and the CSV file into a form which can be used by our processing software. What we need to do is to describe each process we run on our data.
This description has two components: the human-readable aspect, which conveys to staff what the purpose of the processing is; and the machine-actionable part of the process (eg, the actual program code used to execute the cleaning operation).
Within our ProcessingEvent, we are given a choice of different types of processes, one of which is a “Cleaning Operation”. (Other choices include control operations, weighting, and data appraisal operations). All of these elements allow us to describe our processing operations in a human-readable form.
Also available within the ProcessingEvent element is a Coding element, which is used to capture the machine-actionable information related to the processing event.
Here is an example of how we might describe our cleaning process using DDI Lifecycle:
<ProcessingEvent id=”LFSCleaningProc”>
	<CleaningOperation>
		<Description>
		This process is used to trim outliers from the LFS input
 data as an initial step in….
		</Description>
	</CleaningOperation>
	<Coding id=”LFSTrimOutliers”>
		<GeneralInstruction>
			<Description>
		This process is executed using the SAS data
editing tools running inside the environment called…
			</Description>
			<Command>
				<CommandFile formalLanguage=”SAS”>
					<URI>https://www.istat.it/SAS/...</URI>
				</CommandFile>
			</Command>
		</GeneralInstruction>
	<Coding>
</ProcessingEvent>
For the human-readable portion of the process description, we have a simple field filled with text. It should be noted that Description elements within DDI Lifecycle can hold XHTML as well, so this information can be formatted and linked to materials outside the XML itself if desired.
The machine-actionable part of the metadata is held in the Coding element, and in this case we are using a GeneralInstruction element, which gives us a description of the program which executes the processing step, and then links off to the file which holds the SAS code. Note that we have an attribute to tell us that this is SAS code, and not some other type of executable script.
By using a set of processing events, the entire data cleaning and validation of the input data set can be recorded. Note that while data cleaning will make changes to the data itself, it typically does not alter the structure of the data set. Thus, while we may want to store multiple versions of the data as it goes between cleaning processes, all of the different data files (that is, PhysicalInstances in DDI terms) would reference the same record structure.
[bookmark: _Toc351115226][bookmark: _Toc360395712]Stage 3: Data Derivation
Data derivation, unlike cleaning, will alter the structural description of the data files, as well as cause changes to the data file itself.
If we look at our example, we will be doing tabulations on the cleaned input data to produce what we need for tabulation and eventual dissemination. One type of derivation is transforming values measured in one way into a related but different variable.
We have Date of Birth expressed as a date in our input data set, but we may want to have a variable Age expressed as an integer instead. To do this, we will produce a new version of the data set which has an additional variable in it – Age.
You can already image that this will require us to make a very similar description of the logical and physical information about our data, as well as having a new data file. All of these would become new versions – of our Physical Instance, and of our DDI metadata (even though we would simply add new modules or schemes to the same StudyUnit).
What we also need to capture, however, is the logical set of information (variables) used to perform the derivation, as well as the human-readable and machine-actionable process which will perfoem the operation.
When we create our Age variable, we will want to have information not about how old the respondent is now, but how old they were during the reference period. Thus, we will need two variables for each respondent: Date of Birth, and Time Period.
We will use a Processing Event again, just as for data cleaning, but this time instead of a GeneralInstruction element, we will use a GenerationInstruction element, which allows us to add some additional metadata:
<ProcessingEvent id=”LFSDerivationProc”>
	<CleaningOperation>
		<Description>
		This process is used to derive the variable Age from the
variable Date of Birth…
		</Description>
	</CleaningOperation>
	<Coding id=”LFSTrimOutliers”>
		<GenerationInstruction>
			<SourceVariable>
				<Scheme>
					<ID>LFS_Vars</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</Scheme>
				<ID> DATE_OF_BIRTH_VAR </ID>
				<Version>1.0.0</Version>
				<Mnemonic>$DOB</Mnemonic>
			</SourceVariable>
			<SourceVariable>
				<Scheme>
					<ID>LFS_Vars</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</Scheme>
				<ID>TIME_PERIOD_VAR </ID>
				<Version>1.0.0</Version>
				<Mnemonic>$TIME</Mnemonic>
			</SourceVariable>

<Description>
		This process is executed using the SAS data
editing tools running inside the environment called…
			</Description>
			<Command>
				<CommandFile formalLanguage=”SAS”>
					<URI>https://www.istat.it/SAS/...</URI>
				</CommandFile>
			</Command>
		</GenerationInstruction>
	<Coding>
</ProcessingEvent>

Here, we see the Processing Event exactly as for the cleaning operations, except that we have been able to add extra elements when we use GenerationInstruction instead of GeneralInstruction inside our Coding element. We have two SourceVariable elements, which reference the Date of Birth and Time Period variables in the input data set, and also specify a Mnemonic element, which holds the variable names as they would appear in the referenced SAS script.
A similar form of documentation would be used to create variables within the data set which hold the counts which will populate the cells of our tabulations – in our case, we will need two “measures” which hold the cell values for the tables we will discuss in the next section.
[bookmark: _Toc351115227][bookmark: _Toc360395713]Stage 4: Tabulation
To describe a tabulation, we need to know how the variables in the processed data set will be aggregated to produce our indicators. We have two indicators being used for our LFS example: Employment viewed as a table Time Period x Geography x Sex x Education Level x Occupation; and employment viewed as a table Time Period x Geography x Sex x Age x Nationality. Both tables are counts.
To express how our data set is tabulated to create these two indicators, we will need to add more metadata to the DDI Study Unit. First, we will need to describe how the tables are structured logically. Then, we will need to create physical layout of the tables, so that we know how to take the ASCII data files and produce the NCubes.
As mentioned at the end of the last section, we have already specified two additional variables in our processed input data set which will hold totals for the cells in our two tables: we will call these “Measure One” and “Measure Two”, respectively, for our two indicators. These variables have been populated in the data set using a process documented with GenerationInstruction elements.
Additionally, because we wish to show totals for some indicators, we may need to version and extend our CodeSchemes and CategorySchemes, so that we have a Code for the Category “Total”. Our codelist CL_SEX initially had only two values: 1 – Male and 2 – Female. Now we will add a third Code-Category pair, 3 – Total.
We have seen how we can describe Codes, Categories, Variables, and Processing Events. We have not yet looked at how DDI can be used to describe tables.
Describing the Logical Data “Cube”
The key to describing a tabulation is the link between the variables in the data set, and how they are used to create a table. In the DDI Logical product module, we have the ability to describe the structure of our table, which is termed an “NCube” in DDI (for “n-dimensional cube”).
There is a special form of the Logical product module called the “NCube Logical Product” which is used when describing NCubes. In this module, we have an NCubeScheme element, with the logical description of our two indicators:
<NCubeScheme version="1.0.0" agency="istat.it" id="LFSNCubeScheme">
		<NCube version="1.0.0" id="NCube_1" dimensionCount="4">
			<Label>Employment sex, age, and nationality
(1,000) (ifaq_egan)</r:Label>
			<Dimension rank="1">
				<VariableReference>
					<ID>TIME_PERIOD_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>2.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="2">
				<VariableReference>
					<ID>NATIONALITY_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="3">
				<VariableReference>
					<ID>SEX_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>2.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="4">
				<VariableReference>
					<ID>AGE_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Measure id="MEAS1_VAR">
				<VariableReference>
					<ID>Var_Meas_1</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Measure>
		</NCube>
		<NCube version="1.0.0" id="NCube_2" dimensionCount="5">
			<Label>Employment Count by Quarter by Country by Sex
by Age by Occupation</Label>
			<Dimension rank="1">
				<VariableReference>
					<ID>TIME_PERIOD_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>2.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="2">
				<VariableReference>
					<ID>NATIONALITY_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="3">
				<VariableReference>
					<ID>SEX_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>2.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="4">
				<VariableReference>
					<ID>AGE_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Dimension rank="5">
				<VariableReference>
					<ID>OCCUPATION_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Dimension>
			<Measure id="MEAS2">
				<VariableReference>
					<ID>MEAS2_VAR</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</VariableReference>	
			</Measure>
		</NCube>
	</NCubeScheme>

In this example, we see each table described as an NCube, using references first to the variables which are used as dimensions, and then to the variable holding the measure. These are ordered through the use of the “rank” attribute, so that keys can be assembled for each observation in the cube, by specifying a valid value for each dimension. Notice that some variables are version “2.0.0” – these are the ones which had to be extended to allow for new codes and categories, to indicate totals. (For TIME_PERIOD_VAR it has been re-coded to hold information about quarters, instead of just a date).
Describing the Physical Data “Cube”
We know what the logical structure of our tables looks like now, and we have established a link between the logical variables and the roles they play in our tabulated data set. What still needs to be specified is the link between the ASCII CSV file holding the values, and the logical structure we have specified.
This metadata is placed in a module called the NCube Physical Data Product. There are some variations in how NCubes can be described physically in DDI, but the one we will use for this example is the most typical one, found in the “NCube Physical Data Product Normal” module. This record layout has all of the same information as the record layout for the input data file, but instead of describing data items in terms of their position as columns for each case, we have a different description of the data items, now identifying them in terms of the logical NCube structure.
For our example, the first table would have the following NCube Record Layout:
			<NCubeInstance version="1.0.0" id="NCI_1">
				<NCubeReference>
					<ID>NCube_1</ID>
					<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
				</NCubeReference>
				<DataItem>
					<Dimension rank="1" value="2010Q4"/>
					<Dimension rank="2" value="AF"/>
					<Dimension rank="3" value="0"/>
					<Dimension rank="4" value="1"/>
					<Dimension rank="5" value="1"/>
					<Measure>
						<MeasureReference>
							<ID>MEAS1</ID>
							<IdentifyingAgency>istat.it
</IdentifyingAgency>
<Version>1.0.0</Version>
						</MeasureReference>
						<PhysicalLocation>
						 <ArrayPosition>1</ArrayPosition>		
						</PhysicalLocation>	
					</Measure>
				</DataItem>
				…
			</NCubeInstance>

The data item element is repeated for each cell in the table, showing what values to pull from the data set. If a record in the data file matches the specified dimension values, then the value of the measure variable holds the observation value. In addition, we have a reference to the logical NCube structure which describes which variables are in which place in the key.
[bookmark: _Toc360395714]DDI and SDMX “Handshake”
[bookmark: _Toc360395715]Summary
The “handover” from DDI to SDMX is best handled by describing a DDI NCube structure and structuring the data as a DDI NCube (as we will see a flat CSV format has been described by one of the DDI NCube Record Types).
[bookmark: _Toc360395716]DDI and SDMX Multi-Dimensional Data Structure Models
DDI NCube Structure
[image:]
The NCube Structure is a model of the conceptual structure of a multi-dimensional data set. It comprises Dimensions, Attributes, and measures, each of which is linked to the variable that describes its semantic and its representation in terms of code list or other format.
SDMX Data Structure Definition

The SDMX Data Structure Definition (DSD), like the DDI NCube, comprises Dimensions, Attributes, and Measure which play the same role they do in DDI.
The SDMX Dimension Descriptor, Measure Descriptor, and Attribute Descriptor are grouping mechanisms with fixed Ids in an SDMX structure and play no real role in the map to the DDI NCube.
The DDI NCube and the SDMX DSD play the same role and their models are comparable. The biggest difference is that each of the components in DDI relates to a Variable whereas in SDMX each relates to a Concept. The data in a DDI data set can therefore have its provenance traced back through the Variable to the Survey,Questionnaire, and responses from which it is formed. SDMX data has no such direct provenance but often the SDMX data is augmented with metadata that can perform a similar role. However, if the SDMX data can be traced back through its DDI origins then an automated provenance will be possible.
Mapping DDI NCube and SDMX DSD
The SDMX DSD constructs are mapped to DDI as shown in the next set of diagrams.
Multi-Dimensional Structures

The basic DDI constructs of Dimension, Measure, and Attribute map directly to equivalent constructs in SDMX. Note that the SDMX Dimension is just one of three different Dimension Component types. It will be important in the mapping to determine the DDI components that identifies type of measure and the Dimension that plays the role of time. The DSD defined in SDMX has a Dimension called LFS_MEASURE and the different types of measure in DDI will map top one of the codes in the code list used by this dimension (CL_LFS_MEASURE). An alternative mechanism is to expose this Dimension in SDMX as a Measure Dimension.
The DDI NCube components (Dimension, Attribute, Measure) are linked to a DDI Variable and it is the Variable that specifies the representation (code list, text, time, numeric etc.). In SDMX there is no such construct as an independently maintained Variable and it the Dimension, Data Attribute, and Primary Measure that is the equivalent of the variable in SDMX i.e. these SDMX constructs identify both the Concept and the Representation whereas in DDI it is the Variable that doesthis.
Representation

In DDI the Variable has a Variable Representation. In SDMX the Abstract class Component has the Representation. The Component can be a Dimension Component (Dimension, Measure Dimension, Time Dimension), Data Attribute, Primary Measure. So there is direct mapping between the Representation of a Variable in DDI and a Component in SDMX.
[bookmark: _Toc360395717]DDI NCube Data Set
[image:]
Fundamentally, the Physical Location describes the CSV format. The layout of the two formats are shown below. Note that the column names are not used (these are to make the columns unddertandable), this is mapped to the Variable Id in NCube and the Component (Dimension, Data Attribute, Primary Measure) Id in SDMX.
The CSV file can either be converted to SDMX_ML using data readers and data writers or loaded directly into a database using an appropriate data reader. In both cases the map of the Dimension and Attribute Ids to the CSV columns and Id of the Dataflow will need to be passed to the Data Reader so that it can verify the data content with the relevant DSD.
[bookmark: _Toc360395718][bookmark: _Toc351115228]Using the SDMX Standard
[bookmark: _Toc360395719]Introduction
In this exercise SDMX is used for Stage 5 - data dissemination. Note that the content of these tables is taken from the Eurostat website, and is not the actual content resulting from the tabulation process in the DDI part of this exercise. This was done to make the dissemination example more realistic (many countries, many occupations, etc.) whilst retaining the reality of the handshake between DDI and SDMX, and the .issues arising from this.
Therefore, the DDI part of this exercise ends with a structural description of a CSV file, and the SDMX part starts with the structural description of a CSV file and a CSV file.
An extract from the two tables is shown below. Note that SDMX can recognise a “null” observation data value by either no content or content of NaN (not a number).
Lfsq_egised
[image:]
Lfsq_egan
[image:]

[bookmark: _Toc360395720]Using the SDMX Information Model
It is necessary to somehow obtain the information from the DDI which defines the conceptual structure of the cube of data in terms of its dimensionality, concepts and coding schemes, and which defines the actual format of the data.
For this exercise a CSV format has been chosen as the input. Whilst the DDI system could output an SDMX data set this exercise has chosen CSV as it is a format that would be used in a system where the technology of the eventual consumer(s) of the data is not known.
The choice of data format is not very important to the exercise as SDMX systems are built around the SDMX Information Model and not around particular syntax implementations of the model. An explanation of this is given here.
Whilst SDMX has standardised the data formats for representing an SDMX dataset, and whilst these formats are important for interoperability, of equal importance is the SDMX Information Model and a component architecture that can be build on this model.
Therefore, it is possible using such an architecture to build components that are agnostic to the actual syntax and format used whilst being faithful to the Information Model. In order to process a CSV file it is necessary to adopt one of two implementation options, each of these is described in terms of the SDMX Information model and the component architecture.
1. Transform a DDI data source to SDMX. This transformation could be performed by a DDI system process or an SDMX system process. For SDMX this would be quite easy to develop using the component architecture and the appropriate data writer implementation. Note that the data Transformer would need to have access to the SDMX Data Structure Definition, and it may need access to mapping information.
[image:]
2. An SDMX system to take the existing output from the DDI system and process this directly. As the data format is not SDMX this process will need access to mapping information.
[image:]

The option use in this exercise was (2) as there exists already the software to process a CSV file in an SDMX system.
[bookmark: _Toc360395721]Stage 5 - The Dissemination Use Case
Overall Scenario
[image:]
The CSV file is loaded into a database that is SDMX web services compliant. The user interacts with a data discovery and data visualisation system that interacts with a data discovery and data query web service which, in turn, uses the SDMX data web services of the database. The database is requested to return the data set as (SDMX) JSON. The JSON is manipulated directly on the client by javascipt in order to visualise the data in a pivot table. The dissemination system comprises a number of processes as described below.
Process - Upload DDI data to a Database

[image:]
The Database Loader (which is agnostic of the actual format or syntax of the data) is passed the CSV data reader component for invocation. This component requires access to the Data Structure Definition which is available in an SDMX Registry. Note that the data reader itself is agnostic to the actual source of the DSD and to the syntax of the DSD as it is processing at the level of objects conformant with the SDMX Information Model implemented by the component architecture.
The CSV reader also requires access to a mapping file which maps the columns in the CSV file to the Dimensions, Attributes, and Observation value of the DSD. In a fully-wired-up system the CSV reader could derive most of this information from a DDI description of the NCube. However, for this exercise a configuration file is used. Note that as neither DDI nor SDMX know about each other it is probable that some form of mapping will be required as it is probable that the SDMX DSD and the NCube will not be aligned:
The Ids of the Dimensions, Attributes, and Measures in each of DDI and SDMX will probably be different.
There may be more Dimensions and/or Attributes in the SDMX DSD than in the DDI NCube and there is a need to provide a fixed value for these on input to an SDMX system.
Both of these mis-alignments are taken care of in the configuration file. It would be ideal if such information could be provided in an SDMX structure such as a Component Map, but whilst the Component Map can provide most of this it does not support the provision of a default value. Note that the Component Map is not concerned with the physical structure of the data, this is taken care of by the DDI (but actually by the configuration file in this exercise).
[bookmark: _Toc360395722]Dissemination Service
Structural Metadata
The following structural components are in the Registry.
[image:]
The purpose of these structures is described in the table below.
	Construct
	Uses

	Data Structure Definition (DSD) and related Concepts and Code Lists
	The DSD defines the structure of data when it is collected or disseminated in a Data Set. It comprises a specification of the Dimensions (these form the “series key”), Attributes (additional metadata), and Measures (observations) that are valid for the data.

Note that the way these are presented in a Data Set is prescribed in the SDMX standards and so a Data Set can be processed in a meaningful way by any application that has access to the DSD.

	Dataflow
	The Dataflow can define a sub set of allowed content for data: many Dataflows can share the same DSD. The sub set is defined in terms of the allowed or actual series keys or allowed code values, or both (as a Constraint). This definition is known as a Content Constraint.

	Constraint
	This is used to define sub sets of Code Lists and series keys. These sub sets can be used by applications for validation or to assist visualisation systems. For instance, in a dissemination system it can be used to identify the actual content in the data source both by the codes that are used and the series keys that are present. Together, this metadata can be used to guide the user to make queries for dimension combinations that actually exist in the data source.

	Data Provider
	Indentifies the provider of the data. This information can be used in a dissemination system to inform the user of the provider or publisher of the data.

	Provision Agreement
	This is used to link the data provider to the dataflow.

SDMX Data Discovery Visualisation
An SDMX-aware system can harness any of the SDMX constructs to support data discovery and visualisation. This includes using constraints built from actual data content.
Data Discovery
[image:]
The GUI designer can choose to represent the structural metadata to support data discovery in any way. In this GUI the category schemes are located and the top level categories (called Topic in the GU) in each scheme for which data exists are presented in the initial selection screen. The user selects a topic and the next lower level categories are shown. Eventually the category will be linked to a dataflow. In this example, as the Labor and Education categories are at end of the category tree for Demographic and Social statistics, this is the next selection screen
[image:]

Detailed Data Selection
[image:]
The Dimension selections are derived from the code lists associated to the Dimensions in the DSD, taking into account the (actual content) constraint built from the data content in the database. Note that the SDMX REST query allows to query for “series key only” which will return the series keys without any observations (at the level of dataflow if such is requested). This are used to build the content constraint.
The Data Discovery and Query web service will build the REST query shown above from this selection and invoke the database web service.
[image:]
Data Visualisation
The data passed to the data visualisation engine (in this case it is javascript running on the client). The actual format requested from the database web service was the SDMX JSON (latest draft format). This format is developer friendly and is easy to manipulate with javascript. The output from this is a pivot table rendered in HTML.
[image:]

The response data set making the same query but output in SDMX version 2.1 is shown below.
Query Response (V 2.1 Structure Specific)
[image:]
[bookmark: _Toc360395723]Annexes
There are four annexes attached to this document. There are two DDI files – one shows the logical description of the input data file, the other shows a real example of an NCube tabulation, with an example of a Processing Event. Both were produced using Colectica. The third file is the structural description of the disseminated tables marked up in SDMX, with an example of an SDMX data file also attached.
The files are:
· LFS_DDI_Example_Main.xml (data description in DDI)
· LFS_NCubes_DDI.xml
· LFS_Structure_SDMX.xml
· LFS_Data_SDMX.xml
Page | 22

image4.png

image5.png

image6.jpeg

image7.png

image8.png

image9.png

image10.png

image11.emf
 class datastructuredefinition_relationshipDataStructureDefinitionMeasureDescriptorPrimaryMeasureconceptscheme::ConceptDataAttribute- usageStatus :UsageStatusAttributeDescriptorDimensionComponent- order :IntegerDimensionMeasureDimensionTimeDimensionDimensionDescriptorAttributeRelationship/conceptIdentity11/grouping11/components/conceptIdentity10..*/components1{not ReportingYearStartDay}+role0..*/conceptIdentity10..1/grouping1{Dimension MeasureDimension}+role0..*0..*/components{0..1 MeasureDimension0..1 TimeDimension}11/grouping+relatedTo1

image12.emf
 class Structure_Pattern_ RepresentationComponent«enumeration»FacetType isSequence minLength maxLength minValue maxValue startValue endValue interval timeInterval decimals pattern startTime endTimeRepresentationConceptSchemeFacet- facetType :FacetType- facetValue :String- facetValueType :FacetValueTypeCodeListDataAttribute- usageStatus :UsageStatusDimensionComponent- order :IntegerPrimaryMeasure+enumerated0..10..1localRepresentation0..1+nonEnumerated0..*1{Measure Dimension}+enumerated0..1

image13.emf
 class NCube_Scheme_Class_DiagramNCube- dimensionCount :Integer- cellCount :Integer- isClean :Boolean- responseUnit :StringDDI_Base::DescriptionCoordinateGroupDimensionValue- rank :String- value :StringCodeValue- value :StringCubeRange- range :RangeTypeDataAttribute- attachmentLevel :AttachmentLevelTypeAttributeAttachmentAttributeAttachmentValue- attachmentValue :StringDDI_Base::VariableReferenceItem_Scheme::VariableItemDimension- rank :Integer:LabelMetadata::DefinitionMeasureAggregateDefinition- isNCubeUniverse :BooleanIndependentDimension- rank :IntegerDependentDimension- rank :Integer0..11..*0..*0..10..*0..*0..*0..1+takesSemanticFrom11..*1..*+attachmentGroup0..1+takesSemanticFrom1+keyDescriptor1..*110..*

image14.emf
 class datastructuredefinition_relationshipDimensionComponent- order :IntegerDimensionMeasureDimensionTimeDimension

image15.png

image16.emf
 class datastructuredefinition_relationshipDataAttribute- usageStatus :UsageStatusAttributeRelationship+relatedTo1

image17.png

image18.png

image19.png

image20.png

image21.emf
 class datastructuredefinition_relationshipPrimaryMeasureconceptscheme::ConceptDataAttribute- usageStatus :UsageStatusDimensionComponent- order :Integer/conceptIdentity1/conceptIdentity1{not ReportingYearStartDay}+role0..*/conceptIdentity1{Dimension MeasureDimension}+role0..*

image22.emf
 class Classes_Defining_Value_and_CodesValueRepresentation- missingValue :String- blankIsMissing :Boolean- classificationlevel :CategoryLevelCodeType- recommendedDataType :CodeValueType- genericOutputFormat :CodeValueTypeCodeRepresentationDateTimeRepresentation- type :DateTimeType- format :StringTextRepresentation- maxLength :Integer- minLength :Integer- regExpression :StringNumericRepresentation- type :String- format :String- startValue :String- endValue :String- interval :Double- scale :Integer- decimalPositions :Integer

image23.emf
 class Structure_Pattern_ RepresentationComponent«enumeration»FacetType isSequence minLength maxLength minValue maxValue startValue endValue interval timeInterval decimals pattern startTime endTimeRepresentationConceptSchemeFacet- facetType :FacetType- facetValue :String- facetValueType :FacetValueTypeCodeListDataAttribute- usageStatus :UsageStatusDimensionComponent- order :IntegerPrimaryMeasure+enumerated0..10..1localRepresentation0..1+nonEnumerated0..*1{Measure Dimension}+enumerated0..1

image24.emf
EmbeddedDataValue

value : String

this shaded area

shows the link

between the data and

the definition of the

NCube structure.

NCubeNormalRecordLayout

NCubeInlineRecordLayout

NCubeTabularRecordlayout

topLeftAnchorcolumn : Integer

topLeftAnchorrow : Integer

ItemValueLocation

PhysicalLocation

storageFormat : CodeValueType

delimiter : String

startPosition : Integer

arrayPosition : Integer

endPosition : Integer

width : Integer

decimalPositiona : Integer

decimalSeparator : String

DigitgroupSeparator : String

languageOfData : String

localeOfData : String

11

MeasureReference

(from DDI_Base)

arrayOrder : String

VariableReference

(from DDI_Base)

ItemValue

DataAttribute

(from NCube_Scheme)

Dimension

(from NCube_Scheme)

Measure

(from NCube_Scheme)

11

MeasureItem

1

+value

1

1

+valueFor

1

DimensionItem

rank : String

value : String

0..10..1

AttributeItem

1

+valueFor

1

1

+value

1

NCube

(from NCube_Scheme)

0..*0..*

1..*

+keyDescriptor

1..*

1

1..*

1

1..*

NCubeDataItem

locale : String

1..*1..*

0..*0..*

1..*1..*

NCubeInstance

defaultDataType : String

defaultDelimiter : String

decimalDecimalPositions : Integer

defaultDecimalSeparator : String

defaultDigitGroupSeparator : String

0..*0..*

1

+structure

1

1..*1..*

PhysicalStructureReference

(from DDI_Ba...

BaseRecordLayout

characterSet : CodeValueType

arrayBase : Integer

1..*1..*

11

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image1.emf

image2.png

image3.emf

