[bookmark: _GoBack]Report for 2019-03-20 – Collections and Patterns
Patterns
· Should there be a separate level of model that contains the patterns and then a level derived from that that removes the patterns for users (automatedly implementing the pattern in “realized”/ inherited classes)
· Should we use inheritance to describe the imposition of the patterns?
· This could imply the use of multiple-inheritance for a few cases. But could be removed in the lower level of model described above. Super-classes are not allowed to inherit from the same class (removing Identifiable would fix this in most if not all cases)
	
Look at analytics on associations in the model – for Packages and Views
	Cluster analysis
		Class to class 
		Package to package and View to View
	Look at modeling associations in network analysis tool (e.g. Gephi)
Most of the multiple inheritance in the model is due to Identifiable and Annotated Identifiable
	We can model this differently – e.g. Identifiable just becomes a property with a set of properties to be repeated

Pull associations out of structured datatype e.g. particularly Annotation
	Many currently have associations. These should be classes or remodeled
Other Structured datatypes (without associations) should be refactored as UML datatypes
Express Views as an aggregation of classes (see below).

Requirements for a Collection
· Group a set of entities together
· Describe a structure on that group (or more than one structure)
· Simple list (for convenience) not functionally different from complex relationship
· Allow all four combinations of ordered and unique
· Complex relationships (e.g. described by an adjacency list)
· Allow for at least the types currently listed in RelationSpecification
· Describe multiple structures on the group?
· Constrain membership to particular classes
· Allow ad-hoc set of classes for membership? (e.g. to describe a particular set of metadata)

We looked at alternate ways of modeling the Collections pattern, but did not reach a conclusion

Further discussion of Collections is next. Also review StructuredDatatypes.
[image: ]

image1.tmp
Modeling Approach

Design Pattern

; i Thisis the
[Abstact Cassesandheir | developers’ model
Relationships]
Reslization This is the user
[concrete Casses and heir | level model
Relationships]
Composition
IPackages and hei These are Views or
Relationships] Packages
o, atemaivey
(UberComposerCiass]

‘The modeling approach we are taking s arguably is 2 variation of the Gang of Four
(GoF) Builder pattern

I the examples so far we have presented just one type of Builder - packages and
their relationships. This Builder puts classes in play in line with the collections.
design pattern.

I the GoF Builder pattern a Director can have one or more Builders.

An aiternative Builder we have not llustrated so far is an UberComposer. The

UberComposer might put a group of classes and their relationships in play in ine
with another abstract design patten.

Imagine another Builder, the UberComposer, who puts the variable cascade in play
in line with the signification design pattern.




