
XML Binding from the DDI Model
Version 3.3 – 2016-04-15

Introduction
This document presents the mapping rules from the XML export from Drupal to the XML schema

deliverables. This process is split into two steps. First an intermediate reduction is produced as a second

XMI file that focuses on what is the best implementation of the platform independent model in XSD.

Second the actual XML schemas are created.

Rules for the Platform Specific Model – PSM
For the reason of getting a simple XML schema definition, with the least possible amount of different

XSD expressions without losing validation capability, some reductions are made to the exported model

from Drupal. This includes at first that all inheritance relationship between classes will be erased, so that

all classes become completely independent entities. Therefore, abstract classes will not be transferred

into the PSM for schema, except, when there is an association pointing to this abstract class. They are

used to fill the list of possible classes to be target of the references resulting out of the corresponding

association. For the same reason, the relationship to the parent class is kept inside the PSM.

As an example, the class Individual, derived from the abstract classes Agent, AnnotatedIdentifiable and

Identifieable

will result in the following representation in the PSM.

The XMI export is therefore transformed as follows:

(1) The overall structure with its steering data for XMI is copied to the new XMI file. This includes

also the two model layers for library packages and views. The library model is created, all its

properties and documentation are copied. The views model is copied entirely as it is.

(2) All library packages will be created, all their attributes and documentation are copied.

(3) All <packagedElements xmi:type=”uml:Enumeration”> and <packagedElements

xmi:type=”uml:DataType”> are copied. They usually just appear within the package

“ComplexDataTypes”.

(4) All <packagedElements xmi:type=”uml:Class” isAbstract=”true”> are created to ensure the

information about the inheritance line. All their attributes and documentation and the

generalization child node are copied, no other children will be transferred here.

(5) All <packagedElements xmi:type=”uml:Class” isAbstract!=”true”> are created, all their attributes

and documentation are copied.

1. All children <ownedAttribute> from all superclasses (referenced by <generalization

general=”xyz”/>) are transferred fi there was no other property on the inheritance path so

far with the same name (overriding properties). This means, that properties and

associations from superclasses will appear before the directly owned ones. The

ownedAttributes will also be transferred, if they come from abstract classes.

Properties will be copied. Associations are created, all attributes except “xmi:id” and

“association” are copied. “xmi:id” and “association” are created with treir content changed

to replace the superclass name with the processed class name. The child <type> is copied,

the children <lowerValue> and <upperValue> are created and their attributes are copied,

except “xmi:id”, which is handled the same way as for the parent node.

The only exception of this will be <ownedAttribute name=”realizes”>.

2. All children <ownedAttribute name=”realizes”> are suppressed as they are indicators for the

realization of a pattern.

(6) After each <packagedElements xmi:type=”uml:Class” isAbstract!=”true”> handled, all needed

<packagedElements xmi:type=”uml:Association”> are created:

1. All associations from superclasses are created. All attributes except “xmi:id” are copied.

“xmi:id” is created with its content changed to replace the superclass name with the

processed class name. All children are created and treated to replace the superclass name

also. This will also include associations from abstract classes.

2. All associations directly related to the processed class are copied.

(7) The <xmi:Extension>, containing the documentation content on property level, is created, all its

attributes are copied.

(8) The documentation content for all packages and views is copied.

(9) With an iteration over all classes, processed within the packages, the field level documentation

will be created for each of these classes:

1. <element> is created, all according attributes are copied. All according children are copied.

2. All <attributes><attribute> children of extension nodes according to the processed classes

superclasses are transferred including the renaming.

General structure of XML schema files for DDI
The general principle for creating XML schema files from the DDI model is to have a general relation

between the type of an entry and its position in the resulting DOM tree. This results in a very flat

structure in XML instances together with universally valid paths to each entry. Practically this means that

there should be no path that is deeper than three steps from the root element. The resulting four levels

of the DOM will be:

(1) The root element is always named “DDI” and can carry an attribute to identify the view it relates

to.

(2) This level will be the only one to contain identifiable objects and nothing else. The order of

appearance is not relevant for the order of use.

(3) All properties of identifiable objects will be contained inline. There could be two different ways

to achieve this:

a. Simple or complex data types are used for direct definition of possible child elements.

Some will be handled as child nodes, some as attributes.

b. Associations to other identifiable objects are handled as references. All reference types

are derived from a general reference type, which is just completed by an attribute that

could contain the type of the referenced object, implemented as a controlled list. The

general reference type already defines the referencing mechanism.

(4) Complex data types might have a sub-structure to carry properties. In some cases this will

include references to identifiable objects, which are implemented in the same way as on level

(3).

<DDI>

 ...

 <Individual>

 <Id>some URN</Id>

 <IndividualName>John Doe</IndividualName>

 ...

 </Individual>

 ...

</DDI>

There is always one library schema file, containing the entire set of all classes from the model. Besides

that, each view defined in the model will also be created as an independent schema file to contain all

class definitions used by that view. References to objects outside the view should be marked as

isExternal=”true”.

Every schema file will contain a definition (complexType and element) of a root element that is always

named DDI. This element will contain:

(1) An attribute to identify its view named “type” that is set to a fixed value for a view schema. This

value will be the name of the view.

(2) A sequence of child elements containing one appearance of DocumentInformation and then an

unbound choice of instances of all the classes that are contained the according view or the

library.

<xs:complexType name="DDIType">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element maxOccurs="1" minOccurs="1" ref="DocumentInformation"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element maxOccurs="unbounded" minOccurs="0" ref="Address"/>

 <xs:element maxOccurs="unbounded" minOccurs="0" ref="ContactInformation"/>

 ...

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="AgentsView"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

High-Level XML Constructs – XML schema files
All DDI classes will run under the same namespace. This namespace will also be used for every view

schema that is created. The Output of the transformation of XMI into XML schema will therefore be one

file to contain the entire library of classes in the published model and one file for each view to contain

all classes needed in this view.

(1) Packages are identified by <packagedElement xmi:type=”uml:Package”> that is a child node

under <packagedElement xmi:id=”ddi4_model”>. They are just used to distinguish between the

complex data type and primitives on one side and the content driven classes on the other side.

(2) In every schema file containing a view, all classes are inserted, that are needed for this view or

library. This includes everything from the packages “ComplexDataTypes” and “Primitives” as

well as all classes being referenced in the view directly or all classes in case of the library. The

only class from outside “ComplexDataTypes” and “Primitives” that is automatically inserted in

every view schema file is “DocumentInformation”.

(3) The Classes from the package with the name “ComplexDataTypes” are handled slightly different.

Details within the section “Class-Level Mappings”. Also, while processing this package, a

complexType is defined, named ReferenceType, to serve as the prototype of all further

references from one class to another.

Class-Level Mappings
(1) Classes: <packagedElement xmi:type=”uml:class”> with no attribute isAbstract=”true”

corresponds to the generation of several things:

a. A global element with the same name as the XMI name attribute, and of the complex

type declared in the next step.

b. A complex type using a concatenation of the name attribute and the string “Type”.

Within its complexContent this will contain an unbounded choice with an element

definition for each <ownedAttribute xmi:type=”uml:Property”> following the next step.

No extention base is set.

c. Both the element and the complexType will also contain an

xs:annotation/xs:documentation with the content of xmi:Extension/elements/element

this the name of the class as content of the xmi:idref attribute. The class level

documentation is there contained in properties/@documentation

(2) Associations to other DDI Classes: If a child <ownedAttribute xmi:type=”uml:Property”> has an

aggregation or association attribute, then resolve the ID in the association attribute, and take

the value of the name attribute from the resolved XMI element. The name will now be the name

of a new element. The type of this element is defined inline, extending ReferenceType by an

attribute name typoOfClass, that enumerates all possible target classes. The list of target classes

is created by iterating over the generalization references starting with the reference from the

ownedAttributes type/@xmi:idref. The DDI referencing elements will always take their

minOccurs and maxOccurs values from the value attribute of the <lowerValue> and

<upperValue> XML elements (a value of “-1” means the maxOccurs has a value “unbounded”.

Example:
<xs:element name="AgentAssociation" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="ReferenceType">

 <xs:attribute name="typeOfClass" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="Individual"/>

 <xs:enumeration value="Machine"/>

 <xs:enumeration value="Organization"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

(3) Properties: If a child <ownedAttribute xmi:type=”uml:Property”> has no aggregation and

association attribute the type for the generated element has to be determined whether it is part

of extended primitive definitions in DDI Core or Utility by the name attribute or one of the

primitives already defined in XML schema, using the <type xmi:type="???"/> child of

ownedAttribute. Cardinalities are handled the same way as for associations. The only exceptions

from this are properties to be identified as language definitions (<type

xmi:type="xs:language"/>). Those properties will become attributes to the defining complex

type of ref xml:lang or of the type xs:language and then keeping their name.

(4) Documentation: Both properties and references will contain field level documentation read

from xmi:Extension/elements/element/attributes/attribute with the name equal to the

ownedAttribute name

(5) Classes in the package “ComplexDataTypes”: All properties (except a property named

“content”) will become attributes to a complexType with simpleContent of the same type as the

property “content”, if this class fulfills the following characteristics:

a. It and its super classes include no associations.

b. It or its superclasses have a property named “content”, that is not of type “anyURI” or

“xhtml:BlkNoForm.mix”.

(6) Classes from the package “Primitives” will not appear as classes as they are part of the XMI

export to handle linkage of properties to primitive data types like string, number formats or

dates.

(7) Enumerations: <packagedElement[@xmi:type=”uml:Enumeration”]> will always be handled

within the package “ComplexDataTypes”. They will result in “simpleType” definitions based on

“xs:NMTOKEN” being restricted to an enumeration of allowed entries.

Example:
<xs:simpleType name="ShapeCodedType">

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="Rectangle"/>

 <xs:enumeration value="Circle"/>

 <xs:enumeration value="Polygon"/>

 </xs:restriction>

</xs:simpleType>

Naming conventions and name transformations
 In Drupal, all class name are written in upper camel case. All properties and associations are

written in lower camel case.

 Within the transformation to XSD, all names of properties and associations are transformed to

upper camel case, to fulfill the conventions of XML. In some cases, underscores and colons are

erased, if they appear.

Versioning the model and schema
To make a lightweight versioning possible that is consistent from Drupal to the schema files, there is an

enumeration in Drupal that only contains one value which is the DDI 4 version number. This

enumeration is just used within the DocumentInformation class inside the model as data type for the

property ofType. Therefore this version number will always be fixed for each instance that is bound to

one of the view schema files or the library schema file for any given version.

Besides that, the version number is read out explicitly within the transformation for the schema file

creation. This makes it possible to use the version number for a version attribute in each schema file’s

root node and in all of the schema file names as an postfix.

	Introduction
	Rules for the Platform Specific Model – PSM
	General structure of XML schema files for DDI
	High-Level XML Constructs – XML schema files
	Class-Level Mappings
	Naming conventions and name transformations
	Versioning the model and schema

