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I. The Upper Model 
The purpose of this section is to show how DDI – Cross Domain Integration (DDI – CDI) fits into the 

overall context of research and the metadata which is used to describe research activities and resources. 

The upper model touches on some areas which are not covered in detail by other parts of DDI - CDI, but 

which may be important in terms of understanding how it can be implemented in systems or with other 

standards that do cover those areas. The Upper Model is merely diagrammatic: it is not included as part 

of the detailed DDI - CDI Model and is not found in the syntax representations. It is intended to provide 

context for how the model may be used in relation to other real-world entities within systems. 

Note that an “upper model” (also known as an “upper ontology” and “foundation ontology”) functions 

“to support broad semantic interoperability among a large number of domain-specific ontologies by 

providing a common starting point for the formulation of definitions. Terms in the domain ontology are 

ranked under the terms in the upper ontology, e.g., the upper ontology classes are superclasses or 

supersets of all the classes in the domain ontologies” (Wikipedia). 

A Research Program for the purposes of this model is an undertaking intended to produce and/or 

analyze data which measures real-world phenomena for the purpose of answering questions about 

policy and science, understood in its broadest sense. It is the context for data capture, data 

management, data analysis and /or data dissemination, depending on the actual scope of the Research 

Program. 

The diagram below shows the Research Program together with a Research Methodology that guides it:  
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Figure 1: Research Program and Research Methodology 

In this model the Research Program corresponds to a GSIM Statistical Program and the Group from DDI 

Lifecycle. Here a Research Component might be a “round” in a longitudinal study. However, a Research 

Program need not be a longitudinal study. Instead of a time series, it could also be the umbrella for a 

group of more or less related snapshots -- a  research “mosaic”, if you will --  that an organization 

undertakes, depending upon what the Research Program and its Research Components are “about”. 

The “about” property group of a Research Program and its Research Components is a structured set of 

data based on terms from DDI Codebook, Dublin Core and Schema.org, assuring comparability across 

many standards. Comparability is assured both within the DDI family of standards as well as between 

DDI and other standards. Note that the “about” of a Research Program and its Research Components 

includes “coverage” and “provenance” at various levels of specificity in line with Dublin Core, DDI 

Lifecycle, and Schema.org. 

A Research Program also has “buzz” and “credits” property groups. “Buzz” comes from Schema.org and 

is the profile that a Research Program cuts in social media – its interaction statistics, audience 

characteristics, comment characteristics, trolls and similar aspects. Between “about”, “buzz” and 

“credits” the Research Program supports the construction of many types of bibliographic citations. (To 

understand how these property groups were developed, see the document “DDI Cross Domain 

Integration: Architecture and Alignment with Other Standards” in this review package.) 

A Research Program is informed by and conducted according to a Research Methodology, which 

involves the plan for how it will be conducted, represented by the Research Design class. Research 

Methodology here is generic. It is patterned after the Research Methodology section or chapter in a 

thesis or a research paper in line with the recommendations of many scientific and governmental 

organizations. It is not intended to be machine actionable. Indeed, DDI - CDI does not provide a detailed 

model of methodology or data management planning. Instead, it focuses on the data and processes 

which such methodologies and plans might involve. One exception to this overall approach is that 

Sampling Design is broken out. Sampling Design is a placeholder for a sampling plan model able to 

describe sampling plans for surveys and other statistical activities for all kinds of samples including 

probability, non-probability and multi-stage / multi-frame. 

A Research Program is controlled by a Research Controller – in PROV-O terms an Agent. The Research 

Controller starts, stops and interleaves data collection, data management, data analysis and data 

dissemination, depending on the results of each, in line with the Research Methodology. 

The diagram below shows in more detail how the Research Controller relates to other points of focus 

within DDI - CDI, notably process and data description.  
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Figure 2: The Research Controller 

The Research Controller interacts with two important parts of the model -- the Research Data Store and 

the Production Environment. The Research Data Store may be a repository, a virtualized data store or a 

metadata store that represents the data at its many stages of development which are used by and 

produced during the Research Program. DDI - CDI provides a model for describing many of the types of 

data which Research Data Stores contain. This model is extensive and supports the integration and 

transformation of the different types of data required. 

The Research Controller also interacts with the Production Environment. DDI - CDI includes two types of 

production environments for now – the Data Capture Platform and the Data Processing Platform.  
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Figure 3: Production Environments 

The Data Capture Platform includes Survey Data Capture together with other data capture types. 

Several types of Data Processing Platforms are depicted here including the ETL (Extract, Transform, and 

Load) , ELT (Extract, Load, and Transform), and BPMN Platforms. These types and the several data 

capture platform types shown here are placeholders for models that may have been developed by other 

standards. Treatment of these placeholders by the production system and at instantiation time by tools 

developed in various communities of practice is discussed in the Architecture document sections on 

standards alignment. 

What DDI - CDI, however, does include is a detailed Process Model. What is presented here is a very 

high-level description. The detailed description can be found in Section IV of this document. 
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Figure 4: Process Model High Level 

The DDI – CDI Process Model is intended to be usable in every type of Production Environment. It 

supports the description of both deterministic and non-deterministic control systems. Deterministic 

control systems use deterministic control logic. Non-deterministic control systems include rules-based 

systems and systems that employ machine learning. 

Note that the DDI Core Process Model traces to PROV-O and an extension of PROV-O called ProvONE. 

This is because the process descriptions in the DDI - CDI model are intended to support the description 

of process as provenance documentation. This is significant – in past versions of DDI, the process model 

has been designed to both describe workflows (DDI 4 Prototype) and the flow of questionnaires and 

related processing (DDI Lifecycle, DDI 4 Prototype) in sufficient detail that they can drive the execution 

of data processing workflows and questionnaires. In DDI - CDI the focus of the process description is 

restricted to just the documentation of provenance. Note that DDI Core, like ProvONE, extends the 

“entity” in PROV-O to data at the variable level, the documentation of specific workflow types and the 

evolution of workflows as occurs in machine learning.  

The Research Data Store comprises a set of Information Objects of different types. Significant among 

these are data sets. DDI - CDI provides a detailed description of data and the structures which are used 

by different types of data sets. 

Some of the most significant Information Objects – those related to describing data – are a major focus 

if the DDI - CDI model. The diagram below shows a more detailed view of how data fits into the 

Production System. 

Note that DDI - CDI Information Objects relate to classes in some other popular models: PROV-O 

provides us with the Entity, to which Information Objects correspond; they can also be seen as 

equivalent to GSIM Information Resources. 
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Figure 5: Data Representation 

The mechanism for describing data structures in the DDI - CDI model provides four basic types: Wide 

Data, Long Data, Multi-Dimensional Data, and Key-Value Data. These types represent different styles of 

describing data structures, using a consistent set of components for identification, grouping 

observations into records, adding descriptive fields, and so on. The differences between each type of 

data description are found in the roles played by these different components. 

The four types are characterized as: 
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Wide Data: This is a way of describing traditional rectangular unit-record data sets. Each record has a 

set of observations about a single unit. The record has a unit identifier and a set of measures and/or 

descriptors which are the same for each unit. The unit identifier can be used as an identifier for the 

record, because each unit has only one.  

Long Data: This is a technique for describing many common types of data, including sensor data, event 

data, and spell data. In this form, each record has a unit identifier and a set of measures and/or 

descriptors, but there may be multiple records for any given unit. The identification of the record is a 

combination of the unit identifier and one or more other fields.  

There are two refinements of the Long Data class which further constrain it to correspond with Event 

Data (defined as Long Data for which an observation time is provided as a single point) , and Spell Data 

(Long Data with fields for start and end times bounding a period). In both of these, the record 

identification involves time as well as the unit identifier. 

Multidimensional Data: Multi-dimensional data is data in which observations are identified using a set 

of dimensions. These values both identify the cell and serve to describe the measured population. 

Records may be organized in various ways and may include descriptors as well as their dimensions and 

measures. It is common to view such data sets as multi-dimensional Cubes, and also to describe them as 

Time Series. These specific approaches are defined as sub-types of DDI - CDI’s multi-dimensional data. 

Key-Value Data: Key-Value Data is data which consists of a set of measures, each of which is paired with 

an identifier. Descriptors may also be attached to these pairs. Such data is often organized in more 

complex ways when it is used but may be stored or exchanged using this simple construction. 

II. Foundational Metadata: Concept, Datum, and Variable1 

A. Introduction 
This section explains concepts, data, and variables as used and described in DDI - CDI. It is detailed and 
technical, but the language and ideas are accessible. They are based on everyday experience; however, 
the approach may be unfamiliar. The result provides a thorough understanding of concepts, data, and 
variables as used in DDI - CDI. The approach uses the theory of terminology as described in ISO 704 – 
Terminology – Principles and methods. 
 
The underlying theory for understanding data and variables is the same as that for concepts and terms. 
We develop this connection. We start with a full description of concepts, what they are, how they are 
structured, and how people refer to them. From this we show that data are a kind of terminology, and 
the connection between concepts and their corresponding objects is precisely what variables do. 
 
Data are often described by what they do, the operations and statistics available to process them. The 
terminological approach is an attempt to define what data are. 
 
Variables are described in DDI - CDI through levels of specificity. This is known as the variable cascade, 
and it enhances reuse of metadata, an important principle of metadata management. How the cascade 
ties back into the terminological view of data and variables is described. 

 
1 Includes material taken from an unpublished research paper by Frank Farance and Dan Gillman. 
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B. Theory of Terminology 
The theory of terminology for special language is described in ISO 704 – Terminology – Principles and 
methods. This section is a reformulation of that standard to data and variables. The ideas of concept and 
object are used throughout. 
 
Readers might find this overall section very philosophical. It is not intended to be that way. We adopt a 
mentalist position for concepts and nothing more. This corresponds to experience. Likewise, objects are 
very generally defined, and they correspond to things in the world that people and systems use. We 
hope this approach allows the reader to maintain an intuitive understanding. 
 

1. Objects 
An object is anything perceivable or conceivable. This is a very general definition, and it implies that the 
idea of object, for our purposes, is the most general thing we consider. Each thing, physical or not, is an 
object. 
 
Perceivable objects are those detectable through one of the five human senses. Any physical object in 
the world is perceivable, mostly through sight and touch, but the other senses may be used as well. For 
instance, a sound is perceivable through hearing. An object may also be perceived through some 
detector. Examples include voltage and current (in electricity), and they are perceived through 
instruments. 
 
Objects may also be conceivable, and these come in two main kinds: abstract and imaginary. Examples 
of abstract conceivable objects are variables, laws, and numbers. Examples of imaginary conceivable 
objects are unicorns and hallucinations. 

 

2. Properties and Characteristics 
A property2 is a determinant, the result of a determination either directly or indirectly about some 
object. Note, this term is used in many other subject areas, and its meaning here is close to the others. 
However, there is a precise and specific meaning being used here. 
 
One form of determination is through observation – something humans perceive through their senses. 
Noticing the color of a person’s eyes is an observation or direct determination of the eye color of that 
person. Another form of determination is through detection by an instrument. An oral thermometer is 
an instrument that detects internal body temperature of a person. Observing a reading on the 
thermometer is an indirect determination about the internal temperature of a person. The specific 
observed eye color and internal body temperature are properties of a person. 
 
It is through properties that enable us to describe and make distinctions between objects. For instance, 
one person may be 185 cm tall, have brown colored eyes and hair, and have medium brown colored 
skin. Another may be 170 cm tall, have blue colored eyes and blond hair, and have very light brown 
colored skin. These properties of each person serve to help distinguish between the two. 
 

 
2 The term property is not defined in ISO 704. 
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Since the examples above use perceivable objects, it is important to note that conceivable objects have 
properties, too. For instance, consider the rational numbers “three and fourteen hundredths” and 
“negative seventeen”. In the same way as with perceivable objects, properties of conceivable objects 
are the results of determinations about these objects. Here, the “sign” (in the mathematical sense) of 
the numbers is a property of them. The “sign” of 3.14 is positive, and the “sign” of -17 is negative. 
 
A characteristic is a determinable. A determinable is something capable of being determined, definitely 
ascertained, or decided upon. It implies a question. Eye color, for instance, is a determinable, and 
applied to a person begs the question of what the color of the eyes for that person is. It is capable of 
being ascertained by looking into a person’s eyes to determine their color. A property, on the other 
hand, is the outcome, or determinant, and it is the answer to the question posed by the determinable. A 
determinant is an element that determines or identifies the nature of something. Blue is a determinant 
for eye color. So, a characteristic has the capacity for being determined (determinable), whereas the 
property is the result of a determination (determinant). Some characteristics of a person are height, eye 
color, hair color, and skin tone. Examples of corresponding properties, taken from the paragraph above, 
are: height has the properties 185 cm and 170 cm; eye color has the properties brown and blue; hair 
color has the properties brown and blond; and skin tone has the properties medium brown and very 
light brown. 
 
A set of properties corresponds to a characteristic. These properties (those in a set) form an extensional 
definition (See sub-section on Definitions) of the characteristic they correspond to. In Examples 5 and 6, 
different sets of properties may correspond to the same characteristic, depending on needs. In addition, 
the same property may correspond to two characteristics. The following Example 1 illustrates this. 
 

EXAMPLE 1: A property may correspond to two characteristics. Consider the following characteristics: 
height (of a person) and length of the diagonal (of a television screen). The property 60 inches (5 feet or 
152.40 cm) corresponds to both characteristics. Some people are 60 inches tall and some large 
widescreen television sets measure 60 inches diagonally across the screen. 

 

3. Concepts 
A concept is a unit of thought differentiated by a set of characteristics. Consider the concept “person”. 
The characteristics of a person include being designed to stand upright on two legs, ability to talk, age, 
marital status, and skin tone. There are many others. 
 
Some characteristics are indispensable for understanding a concept. These are the essential 
characteristics. A delimiting characteristic is a characteristic used to distinguish it from a generic 
concept. For example, an essential characteristic of people is they are designed to stand and walk 
upright. This is also a delimiting characteristic since it distinguishes people from other primates. 
The intension of a concept is the set of characteristics associated with the concept. The extension of a 
concept is the totality of objects to which a concept corresponds.  
 
A defining characteristic is a characteristic which is representative of objects in the extension of a 
concept. A defining characteristic of people is that they stand and walk upright. Not every person is 
capable of walking and standing upright, even though they are designed that way. Paralyzed or injured 
people may not be able to stand. 
 

http://www.merriam-webster.com/dictionary/determined
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Characteristics and properties are concepts, and each kind plays a role. The role is how the ideas are 
distinguished. The role for a characteristic is determinable, and that for a property is determinant. 
 
Example 2 illustrates the importance of establishing essential characteristics for a concept. In particular, 
the addition of a single characteristic may have profound influences on the objects in the extension of 
the concept. Adding or removing characteristics often affects the meaning of a given concept, changing 
the concept itself. Thus, the extension would be expected to change. 
 
 

 
 
A general concept is a concept which corresponds to an indeterminate number of objects which form a 
group by reason of common properties. An example is the concept “planets in our solar system”. An 
individual concept is a concept which corresponds to only one object. An example is the concept 
“Saturn”. In other words, a general concept may have any number of objects in its extension, and an 
individual concept must have exactly one object in its extension. 
 
Note, a concept might be so defined that there exists only one object in its extension even though the 
possibility for more exists. This is still a general concept. For example, the notion “all planets with one 
moon” is a general concept. Even though there is one known planet with one moon – Earth – the 
possibility there are more cannot be ruled out. 
 
The following Figure 6 shows the relationships between concepts and characteristics on the one hand 
and objects and properties on the other. The figure illustrates the correspondence between a concept 
and all the objects in its extension. The parallels between this construction and how data are obtained 

EXAMPLE 2:  
 
The concept of planet was revised in 2006 by the International Astronomical Union. This revision 
resulted in the elimination of Pluto as one of the planets in the solar system. Pluto was long 
considered the ninth planet in the solar system, but some astronomers questioned this classification. 
Several properties Pluto possesses differ markedly from those of the other planets. Additionally, 
recent advances in astronomy - much better telescopes and vastly improved computation - showed 
there are many more celestial bodies that could be considered planets if Pluto remained one. 
Therefore, a concerted effort was made to define “planet” in a more limiting way. 
 
The concept of a planet is now defined by these four essential characteristics: A planet is a celestial 
body that 
1 Is in orbit around a star 
2 Contains sufficient mass to maintain a nearly spherical shape due to its own gravity 
3 Is not massive enough to cause thermonuclear fusion in its core 
4 Has “cleared the neighborhood”, i.e., become gravitationally dominant, so the only other bodies 

in its vicinity are its satellites 
 
This fourth characteristic is what eliminated Pluto. 
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through surveys, experiments, clinical settings, and other kinds of observations is clear. This parallel will 
be discussed in subsequent sections. 
 

 
 
Figure 6: Concept - Object Correspondence 

 

4. Signifier, Signified, and Sign3 
A signifier is a concept whose extension is restricted to perceivable objects. An object in the extension 
of a signifier is a token. For instance, the objects 5 and 5 are both tokens of “the numeral five”, a 
signifier. A signifier has the potential to refer to something. Typically, in statistical offices, the tokens of 
signifiers are alphanumeric strings. 
 
A signified is an object intended to be denoted by a signifier. Any concept, which is also an object, may 
be a signified. A sign is the representation of a signified by a signifier, which denotes it. 
 
See Figure 7 for a pictorial explanation of signs, consistent with the wording in this section. 
 

 
3 This is outside the scope of ISO 704. 
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Figure 7: Structure of Signs 

 

5. Kinds of Signs 
The following is a list of kinds of signs for which the signified is an object: 

• A label is a linguistic sign for an object 

• A name is a non-linguistic sign for an object, where the signifier is an alphanumeric string 

• An identifier is a label or name intended to be used for dereferencing 

• A locator is an identifier with a known dereferencing mechanism 
 
The following is a list of kinds of signs for which the signified is a concept: 

• A designation is a sign for a concept 

• A code is a non-linguistic designation for which the signifier is alphanumeric 

• An appellation is a linguistic designation for an individual concept 

• A term is a linguistic designation for a general concept 

• A numeral designates a number, where a number is a concept, and the tokens for numerals are 
numeric strings 

 
Terms, numerals, and codes are typically used to designate values (See section on Data). 
 

6. Definitions 
A definition is a descriptive statement which serves to convey the meaning for a concept, and it 
differentiates it from related concepts.  There are 2 kinds of definitions.  An intensional definition is a 
definition that describes the intension of a concept by stating the superordinate concept and the 
delimiting characteristics.  The definition of delimiting characteristic in the section on Concepts is an 
example of an intensional definition.  An extensional definition is a definition of a concept formed by 
enumerating its subordinate concepts under one criterion of subdivision.  The definition of relation in 
the glossary is an example of an extensional definition. Note, both kinds of definitions depend on 
knowing the definitions of other concepts in order to fully understand the concept under study. 

C. Data 
This section contains a description of the connection between data and terminology. A datum is defined 
as a kind of designation. 
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1. Values 
A value is a concept with an equality operation defined. 
 
Any concept may have an equality operation defined for it. For a set of values, the same equality 
operation is sometimes defined for the entire set, and this leads to the construction of datatypes. See 
ISO/IEC 11404 – General purpose datatypes. Assigning an equality operation to a concept implies that if, 
say, two people say they have that concept, a determination of equality between them can be made. 
For example, two people agree they have the same gender. This operation may be different depending 
on the situation. In fact, more than one measure of equality can be defined for any given concept. See 
Example 3. 
 

EXAMPLE 3: Consider the natural number “seventeen”.  It is a concept, and its extension is all situations 
of 17 objects.  Equality may be defined as it is commonly understood for natural numbers.  Another way 
to define equality for natural numbers, including “seventeen”, is to ask if the number is even or odd.  In 
this situation, all odd numbers are equal, and all even numbers are equal. 

 

2. Datum 
A datum is a designation of a value. 
 
A fundamental requirement for a datum is that it can be copied.  In Information Technology, the need 
for copying happens all the time in data processing.  The only way to know a datum has been faithfully 
copied is to compare the copy to the original.  The comparison determines whether equality is satisfied 
(and the copy is faithful).  Therefore, a datum must satisfy the equality <11404> property. 
 

EXAMPLE 4: M for married, as in some person is married.  Married is a value, since marriage is a social 
and legal status controlled by the state.  Equality may be determined by referencing the meaning in 
common law. 

 
A datum is often generated in some context, and this context is what connects it to Figure 6 and to the 
connection between concepts and objects. Suppose we consider the object Donald Trump, and we 
determine he has orange hair. Donald Trump is an object, and we can find a concept for which he is in 
its extension. We know, for instance, he is president of the United States, so he is in the extension of the 
concept of presidents of the US. This concept has characteristics, and one of them is hair color (of a 
president). For argument’s sake, suppose all the possible hair colors of presidents are Orange, Gray, and 
Brown. Thus, each president (each object in the extension of the concept presidents of the US) has one 
of the possible hair colors. Washington’s hair color was Gray, and Obama’s is Brown. In each case, the 
appropriate one must be determined. So, the possible hair colors are determinants, and they are 
possible properties of the characteristic hair color. 
 
Now, given that the hair colors Orange, Gray, and Brown are all the ones possible, every president is 
assigned one and only one color. Assuming the extension of a concept is a set, this means hair color 
forms a partition of the extension of presidents of the US. Each class in the partition is defined by one of 
the properties. In this case, there are 3 classes: Orange, Gray, and Brown. No president belongs to more 
than one class, and every president belongs to at least one. This characterizes a partition. 
 



 DDI - CDI: Integrating Data for Better Science 
 

16 
 

When we determine the hair color of a president, we might want to record that, so we assign signifiers 
to each of the possible properties: for instance, o for Orange, g for Gray, and b for Brown, and through 
this assignment we create designations called codes. Again, by observation, we have a way to decide if 
two presidents have the same hair color, and this is based on light reflectivity and color reception in the 
judge’s eyes. So, there is an equality operation for each of these properties. This means each of the 
properties is a value, each code is a designation, and when we assign a hair color and write down a 
signifier representing the determination, a datum is produced. 
 
Here, the equality operation for each property (value) serves as an equivalence relation for the partition. 
Two objects (presidents) have the same property and are in the same class in the partition if and only if 
they have equal hair color. This equality is assessed through the equality operation previously defined. 
 

EXAMPLE 5: Example of a partition of people based on marital status 
Concept = people of the UK 
Characteristic = marital status 
Partition = {single, married, divorced, widowed}, where “single” means never married and the rest 
correspond to their usual meanings.  The signifiers S, M, D, and W designate these concepts, 
respectively. 

 

EXAMPLE 6: Second example of a partition of people based on marital status 
Concept = people of the UK 
Characteristic = marital status 
Partition = {single, married}, where “single” means not married and married takes its usual meaning.  
The signs S and M designate these concepts, respectively.  The purpose of the example is to show that 
more than one partition may apply to a characteristic of a concept. 

 

EXAMPLE 7: Example of a partition of gambling casino games based on probability of winning 
Concept = gambling casino games 
Characteristic = probability of winning 
Partition = {x | 0 < x ≤1} (the set of all numbers, x, such that x is greater than zero and less than or equal 
to one), where x is a probability.  The signs are the numeric strings that designate the numbers, to some 
agreed upon precision, fixing the lengths of the strings. 

 

D. Variables and Aggregates 
Variables and aggregates are determinable (in the sense previously described), and therefore are 
characteristics of some concepts. Variables are mostly characteristics for general concepts, and 
aggregates are mostly characteristics of individual ones. This corresponds to the notion that a variable is 
a mapping between some collection of units (the extension of the general concept for which the 
variable is a characteristic) to a set of values. An aggregate does the same, except the concept is an 
individual one, so there is one unit – the aggregate. 
 
There are some exceptions. In socio-economic statistics, a household income is the sum (an aggregation) 
of the incomes of each of the individuals in that household. This aggregate applies to a general concept 
(i.e., households). 
 



 DDI - CDI: Integrating Data for Better Science 
 

17 
 

Table 1 shows how the terminological constructs described correspond to common notions about data 
found in socio-economic data. 
 

Socio-Economic Data Terminology 

Unit Type or Universe Concept 

Microdata General concept 

Macrodata Individual concept 

Frame Extension 

Variable or aggregate Characteristic 

Unit Object (in the extension of the concept) 

Observation (or estimation) Property 

 
Table 1: Socio-Economic Data versus Terminology 
 

E. Variable Cascade 
In DDI - CDI, the variable cascade is the way the descriptions of variables is managed. The main purpose 
of the cascade is to increase the reuse of metadata. The features defined at each level of the cascade 
don’t depend on features at any of the lower levels. Because of this, the descriptions at each level are 
reusable. 
 
The cascade consists of four levels, each level corresponding to an ever-increasing descriptive detail. The 
levels in the cascade are 

▪ Concept 
▪ Conceptual variable 
▪ Represented variable 
▪ Instance variable 

 
The names of the levels indicate to the user what the main focus of the description is at each. The 
Concept and Conceptual Variable provide details about the concepts employed. The Represented 
Variable and Instance Variable provide the details about the codes, characters, and numbers 
representing the concepts at the higher levels. 
 
We will describe these levels and show how they fit into the terminological approach in the following 
sections. In tables in each section, we illustrate the approach with two examples. The attributes are 
taken from the class diagram of DDI - CDI. We only illustrate the attributes at each level. The inherited 
ones from the level above are assumed. 
 

1. Concept 
The variables about some subject share that subject as common among them all. For example, all 
variables in use in data sets in a research library about marital status share that concept among them all. 
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There may be little in common about the marital status as measured in each variable, but marital status 
itself – the fact there are statuses across societies or cultures – is a common characteristic. The concept 
expressing this commonality is the purpose of this highest level. 
 
The concept at this level is very generic, because it must account for all possible variations of the more 
specialized versions attached to each variable that makes use of it. 
 
Concept 

ID Name Definition 

1 Marital status Category of current marital arrangement 

2 Age Whole number of years of operation 

 

2. Conceptual Variable 
The Conceptual Variable is the level at which most of the concepts used to describe a variable are 
applied. The main concepts are the determinable associated with a variable and the possible 
determinants. In our marital status example, the main concepts are: 
 

▪ Determinable: marital status 
o The specialized nature of this concept is that it is applied to people living in the US (for 

instance) 
▪ Determinants: kinds of marital status 

o Single 
o Married 
o Divorced 
o Widowed 

 
This example illustrates that at the conceptual variable, the determinable and determinants are 
concepts. Suitable determinants form an extensional definition for the determinable. In our case, single, 
married, divorced, and widowed do form an extensional definition for marital status. The determinants 
are known as substantive values in DDI - CDI. 
 
Additional concepts are those associated with missing data. These are known as sentinel values. The two 
most important, ones that the statistical packages use, are “missing” and “refused”. There might be 
others, depending on processing needs. 
 
Conceptual Variable (Links to Concept) 

Name Marital Status Age 

Concept Concept #1 Concept #2 

Unit type Person Business establishment 
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Substantive 

Conceptual 

Domain 

Single 

Married 

Divorced 

Widowed 

Count (of years), top 

coded at 25 

Sentinel 

Conceptual 

Domain 

Missing 

Refused 

 

Missing 

Refused 

 

 
In this table, the names of the categories for marital status in the substantive conceptual domain are 
there in place of actual concepts. The only way to write down a concept is either through providing a 
definition or providing an unambiguous term or word denoting it. 
 

3. Represented Variable 
The main addition at the Represented Variable level is the signifiers for the determinants, or substantive 
categories. Assigning signifiers to concepts turns them into designations. So, in our example, we might 
end up with the following designations: 
 

▪ <s, single> 
▪ <m, married> 
▪ <d, divorced> 
▪ <w, widowed> 

 
The set of these designations is a substantive value domain. As discussed, the underlying concepts form 
an extensional definition for the determinable, the concept associated with the variable. So, these 
determinant concepts are associated with the subject matter of the variable, not with processing. A 
substantive value domain can be used by many Represented Variables, so it is important to identify and 
manage them. 
 
Represented Variable (Inherits from Conceptual Variable) 

Name Marital Status Age 

Universe Deer Hunters Gun Shops 

Substantive Value 

Domain 

<s, Single> 

<m, Married> 

<d, Divorced> 

<w, Widowed> 

Count (of years) 

represented with 2-digit 

Arabic numeral 

Unit of Measure N/A years 
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Intended 

Datatype family 

Nominal Quantitative discrete 

 
The Intended Datatype Family attribute above needs some explanation. The interpretation of datatypes 
in this document is contained in the international standard ISO/IEC 11404 – General purpose datatypes. 
This standard provides 2 ideas that are central to understanding the Intended Datatype Family attribute 
here. 
 
First, each datatype is defined through 3 ideas: 
 

1. Value Space – the specific values the datatype covers, which are contained in the Substantive 
Value Domain for any variable. In the case of the Marital Status variable in the example above, 
the elements listed under the Substantive Value Domain make up the Value Space. 

2. Characterizing Operations – the operations that distinguish one datatype from another. For 
example, an area allows for a perimeter and an area calculation, but a distance is just a linear 
measure. 

3. Axioms – the rules one may assume the data obey. Confusingly, these are called properties in 
ISO/IEC 11404. One 11404 property all datatypes have is equality, and this, as we’ve seen above, 
is the defining characteristic that distinguishes data from terms or designations in general. 
Another example of an axiom is whether data are bounded or not. A finite list of numbers must 
be bounded, but the list of positive integers has no largest value. It is unbounded at the top. 

 
The combination of axioms and characterizing operations for a value space determine a computational 
model associated with the data defined in the value space. By alluding to the need for defining equality 
for a concept defining a datum, we implicitly call into play an underlying computational model. Data are 
used for computation; and specifying the limits of that computation is what a datatype is for. 
 
Second, ISO/IEC 11404 does not, and cannot, say what the value space is for the descriptions of 
datatypes contained there. So, the descriptions are generalized, and they address the axioms and 
characterizing operations that each kind of datatype, or datatype family, must have. 
 
For instance, datatypes describing the marital status values above and genders (the set of gender 
categories and codes: {<m, male>, <f, female>}) have the same axioms and characterizing operations. 
The only difference is the value space. As such, these datatypes are both members of the same datatype 
family, namely the statistical type called nominal. 
 
Nominal, Ordinal, Interval, Ratio, Quantitative, Qualitative, Discrete, and Continuous are names of 
datatype families typically used in the statistics. In the examples above, we make use of these. 
 

4. Instance Variable 
Moving further down the chain to data, we get to the Instance Variable. An Instance Variable is intended 
to be a variable used in a data set. For each data set, new Instance Variables are created. 
 
The main addition in specificity is turning the sentinel categories into designations. Further, the list of 
sentinel values (designations) are managed in one set, the sentinel value domain. Separating the 
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substantive and sentinel value domains eases the burden on metadata management. Changes needed in 
one kind of value domain do not affect the other. 
 
An example of the designations in a sentinel value domain is: 
 

▪ <m, missing> 
▪ <r, refused> 

 
Since, the Instance Variable is associated with data in a data set, then the datatype of the data for that 
variable is necessary information as well. 
 
Instance Variable (Inherits from Represented Variable) 

Name Marital Status Age1 

Population US Deer Hunters in 2019 US Gun Shops in 2019 

Sentinel Value 

Domain 

<1, Missing> 

<2, Refused> 

<1, Missing> 

<2, Refused> 

Function demographic establishment 

Physical Datatype  1-character 2-integer 

 
The codes used to designate the sentinel categories are often determined by each statistical package. 
This topic will not be addressed in detail here. 
 
The Physical Datatype addresses the kind of data as written on a file. The value $2.60 (two dollars and 
sixty cents) is often written as a real number with 2 decimal places. But monetary amounts don’t follow 
all the rules for real numbers. The amounts at the third decimal place or after are truncated. The values 
are not rounded, as real numbers will be. This has an effect on computations, as the following example 
illustrates: 
 
Take the average of $1.50, $1.30, and $1.00. The arithmetic average is $1.2666. The rounded real 
number average is $1.27, and the monetary, or scaled number, rounded average is $1.26. The reason is 
the fractional penny is dropped in the scaled situation. And the rules for scaled numbers correspond to 
how banks handle money. 
 
Therefore, the physical datatype is often just an approximation of what is needed to describe values. 
Instead, it corresponds to how the values are written in a file. The actual use of the values depends 
more on the Intended Datatype at the Represented Variable level 
 

F. Detailed Documentation for Foundational Metadata in DDI - CDI 
 

Detailed documentation at for the Foundational Metadata in DDI – CDI can be found in this package in 

the folder: \DDI-CDI Public Review 1\2 Model\Field-Level Doc\. 
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III. Data Description 

A. Introduction 
The DDI-CDI model is defined as a Unified Modeling Language (UML) model. Figure 8 below shows a 

core portion of that model. The elements (classes) of the model appear as boxes with a name at the top 

and a list of properties below the name. Properties, listed in the bottom half of the box for the class,  

contain the payload of the class. Sometimes the value of a property is complex. The “definition” 

property of a Concept, for example, has the datatype of “InternationalStructuredString”, which will have 

a text string, but also other properties such as whether it is translated and from what language it is 

translated. This complexity is the result of 20 years of incorporation of use cases into the model. 

Classes may also have associations with other identifiable classes. In the diagram below a Datum has a 

simple association named “denotes” with a ConceptualValue. This relationship is read as “a Datum 

denotes a ConceptualValue”. It is displayed in the diagram as an arrow that indicates the order in which 

the association is to be read.  Classes that can be the target (object) of an association have a unique 

identifier and are reusable. The target end is indicated by an open arrowhead.   

Some classes inherit from others. A ValueString inherits (is a type of) from an InstanceValue. This is 

indicated by the filled-in triangular arrowhead on the parent end.   

Some associations indicate containership. A ConceptSystem aggregates (has) a set of Concepts. This is 

indicated by the diamond on the containing end of the relationship line and is read as “a ConceptSystem 

has Concept”. 

A Datum populates a cell of a dataset, database table etc.4 through an InstanceValue. The Datum links 

some conceptual value to a physical representation. In the diagram below a ValueString is a physical 

representation. It future versions of the model, the physical representation could be an image, a sound 

byte or some other digital representation.  Introduction of the ConceptualValue allows for the 

description of multiple representations in perhaps multiple platforms of the same measurement. A 

height, for example could be recorded as a decimal string or a binary string. 

Physical structures (like files) are made up of DataPoints, each of which contains one InstanceValue. 

In this model, InstanceVariables constrain DataPoints and Datums. They are no longer restricted to 

describing a column in a table. 

 The general idea in DDI-CDI is to be able to attach metadata at the “cellular” level, rather than at the 

structural level, and to allow those “cells” to be arranged into different structures without loss of 

descriptive information. 

(For more information about how UML diagrams are used in DDI – CDI, please see the document “DDI 

Cross Domain Integration: Architecture and Alignment with Other Standards” in this package.) 

 

 
This is how Datum is defined in the DDI4 prototype documentation and GSIM.docx 

 

https://lion.ddialliance.org/ddiobjects/datum
https://statswiki.unece.org/display/clickablegsim/Datum
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Figure 8: Datum in the DDI-CDI Model 

B. Detailed Documentation for Foundational Metadata in DDI - CDI 
 

Detailed documentation at for Data Descrition model  in DDI – CDI can be found in this package in the 

folder: \DDI-CDI Public Review 1\2 Model\Field-Level Doc\. 

 

C. Scope 
The DDI-CDI Data Description provides the basis for describing a broad range of data structures using a 

core set of metadata elements. The model separates data structure and content in such a way as to 

allow data to be structured flexibly. 

This section describes the general approach which DDI-CDI is taking, before going through the details for 

a selected set of data structures. The goal for DDI-CDI is to describe various data structures, both legacy 

structures such as rectangular data sets, multi-dimensional data, and event data, but also new ones like 

data streams or data lakes. The approach is independent of any specific domain or discipline, as similar 

data structures are used broadly in a range of research settings.  

The model has structures for documenting different data structures and the transformations between 

them. 

class Datum

DataDescription::

Datum

DataDescription::

ConceptualValue

Identifiable

DataDescription::

InstanceValue

RepresentedVariable

Conceptual::InstanceVariable

+ physicalDataType: ExternalControlledVocabularyEntry [0..1]

+ platformType: ExternalControlledVocabularyEntry [0..1]

+ variableFunction: ExternalControlledVocabularyEntry [0..*]

DataDescription::ValueString

+ content: TypedString [0..1]

+ whiteSpace: WhiteSpaceRule [0..1]

AnnotatedIdentifiable

DataDescription::

DataPoint

AnnotatedIdentifiable

Conceptual::Concept

+ definition: InternationalStructuredString [0..1]

+ displayLabel: LabelForDisplay [0..*]

+ name: ObjectName [0..*]

AnnotatedIdentifiable

Conceptual::ConceptSystem

+ duplicates: boolean [0..1]

+ name: ObjectName [0..*]

+ purpose: InternationalStructuredString [0..1]

«dataType»

InternationalStructuredString

+ languageSpecificStructuredString: LanguageSpecificStructuredStringType [1..*]

(from StructuredDataTypes)

0..*
uses

1

0..*

has

0..*

1..*

represents

0..1

0..*

isBoundedBy

1

0..1
isStoredIn

0..1

0..*

isDescribedBy

1

0..*

isDefinedBy

0..*

0..*
denotes

1
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Data structures are a way to organize data in an organized way in order to be processed by software 

programs. The current DDI-CDI model can be used to describe data from different data structures using 

a Datum-based approach. This approach involves describing each “cell” in a granular fashion, such that 

the same values can be recognized when occurring in differently structured data sets. 

The following structures are covered: 

Wide Data: Traditional rectangular unit record data sets. Each record has a unit identifier and a set of 

measures for the same unit. 

Long Data: Each record has a unit identifier and a set of measures but there may be multiple records for 

any given unit. The structure is used for many different data types, for example event data and spell 

data. 

Multi-Dimensional Data: Data in which observations are identified using a set of dimensions. Examples 

are multi-dimensional cubes and time series. (Note that support is provided for time-series-specific 

constructs to support some legacy systems which are not based around the manipulation of multi-

dimensional data “cubes”.) 

Key-Value Data: A set of measures, each paired with an identifier, suited to describing No SQL and Big 

Data systems. 

 Each of the four data structure types - Wide, Long, Dimensional, and Key-Value - are structured in 

slightly different ways but share some common features. Before going into how each of them can be 

structured a set of related core components will be presented, applicable across the range of data 

structures described. 

This chapter describes the DDI-CDI approach to each of the above-mentioned data structures according 

to the following outline: 

A. Introduction 
 
B. Detailed Documentation for Foundational Metadata in DDI – CDI 
 
C. Scope 
 
D. Basic Concepts 

1. Variables and Values 
2. Keys 
3. Data Structure Components 
 

E. Wide Format (Unit Record Data Structure) 
1. Example 
2. Discussion of Structure and Diagrams – Wide 
 

F. Long Data Format 
1. Example 
2. Discussion of structure and diagrams – Long 
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G. Multi-Dimensional Format 

1. Example 
2. Discussion of structure and diagrams – Dimensional 

 
H. Key-Value Format 

1. Example 
2. Discussion of structure and diagrams – Key-Value 
 

H.    Physical Data Set (Wide Format) 
 
I. Transformations between Formats/Examples 

1. Wide and Long: Correspondence between Unit record data and data in a Long format  
2. Wide and dimensional: Unit record data tabulated into an aggregate data Cube 
3. Long and Dimensional: Dimensional data represented in a Long data format 
4. Key-Value and Wide: Key-Value Stores in RAIRD 
5. Time Series 
6. Key-Value Stores and Streams 

 

D. Basic Concepts 
 

Before explaining about the four data structure types some basic shared concepts require explanation. 

1. Variables and Values 
Consider this portion of the model: 

 

class DataPoint

AnnotatedIdentifiable

DataDescription::

DataPoint

DataDescription::

Datum

DataDescription::

ConceptualValue

Conceptual::InstanceVariable

+ physicalDataType: ExternalControlledVocabularyEntry [0..1]

+ platformType: ExternalControlledVocabularyEntry [0..1]

+ variableFunction: ExternalControlledVocabularyEntry [0..*]

AnnotatedIdentifiable

Conceptual::ConceptualDomain

+ displayLabel: LabelForDisplay [0..*]

Conceptual::

SubstantiveConceptualDomain

Representations::

SubstantiveValueDomain

AnnotatedIdentifiable

Representations::ValueDomain

+ displayLabel: LabelForDisplay [0..*]

+ recommendedDataType: ExternalControlledVocabularyEntry [0..*]

Identifiable

DataDescription::

InstanceValue

Conceptual::RepresentedVariable

+ hasIntendedDataType: ExternalControlledVocabularyEntry [0..1]

+ unitOfMeasurement: String [0..1]

Concept

Conceptual::ConceptualVariable

+ descriptiveText: InternationalStructuredString [0..1]

0..*

takesConceptsFrom

0..1

0..1

isStoredIn

0..1

0..*

isDescribedBy

1

0..*

isBasedOn

0..1

0..*

isBoundedBy 1

0..*
uses

1

0..*

takesSubstantiveConceptsFrom

0..1

0..*

denotes
1

0..*
hasValueFrom

1

0..*

hasConceptFrom
1

1..*

represents

0..1

0..*

takesSubstantiveValuesFrom

0..1

0..*

isBasedOn

0..1
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 Figure 9: DataPoint in the model 

To the right in Figure 9 above the variable structure that provides meaning to the data is displayed.  (The 

variable structure is often referred to as the Variable Cascade, as described earlier in this document in 

the section on Foundational Metadata.) 

The Variable Cascade facilitates distinctions between Instance Variables (the variable as in the dataset), 

Represented Variables (the reusable components of a variable) and Conceptual Variables that expresses 

the conceptual basis of a variable.  

In the middle of the figure domains are displayed, which provide representations and contexts for the 

data values. The SubstantiveConceptualDomain specifies the set of valid concepts for the 

ConceptualVariable, while the SubstantiveValueDomain specifies the set of values for the corresponding 

InstanceValues. ConceptualDomain and ValueDomain are abstract classes of which 

SubstantiveConceptualDomain and SubstantiveValueDomain are sub-classes. 

The left part of the figure displays how data values are modeled. The DataPoint represents a ‘cell’ in a 

data structure that stores the InstanceValue, which is the actual representation of the observation or 

value in a data set. Datum is a mediator between the InstanceValue and the ConceptualValue, which is a 

more generic and reusable value format.  

The DDI 4 Data Description is based at the core on the description of a single datum associated with a 

data cell (a DataPoint). One example of a DataPoint is a single cell in a rectangular table.  DataPoints, in 

turn, are organized into structures. (This will be described further below.)   

Earlier versions of DDI (e.g., the DDI Codebook and DDI Lifecycle specifications) allowed for the 

description of two structures, records and NCubes.  The record structure was defined in terms of a list of 

variables and did not allow for the description of individual cells. The NCube structure was an assembly 

of variables, to allow for the process of tabulation to be recognized. DDI – CDI takes a more granular and 

more generalized approach. 

DDI-CDI also explicitly models the conceptual value that is represented by the symbol in the DataPoint 

along with the Unit measured by the value associated with a DataPoint. The DDI-CDI approach allows for 

the explicit description of different representations of the same measured value. This is called Instance 

Value in the model. A measurement (the captured value) of Marie’s (the Unit) longevity (the type of 

measure) at a specific time might, for example, be represented in Arabic numerals, roman numerals, or 

words. In our unit record example Marie’s longevity is recorded in Arabic numerals as “73.7”. The 

measurement might be contained in different software packages that have subtly different 

representations of a number.  All of these represent the conceptual (measured) value of the longevity 

but use different symbols to do so.  

Following GSIM, DDI-CDI includes the elements Datum, and DataPoint. In the DDI-CDI model, a Datum 

connects a conceptual value (a type of Concept) with a representation (a perceivable symbol, the 

instance value). In the case of Joe’s height taken on 2019-07-16, a Datum would link the conceptual 

value of that height to a specific sequence of characters (e.g. “183,5” cm). Another Datum might link 
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that same conceptual value to a different sequence (“183.5” cm). Both instance values stand for the 

same measurement but use different physical symbols. 

A DataPoint is a kind of container for the representation of a value, the instance value. Think of a cell in 

a spreadsheet. Its column corresponds to an InstanceVariable. Its row corresponds to a Unit. It may have 

content or it may be empty. Changing the format of the cell changes the representation (instance value), 

but the underlying value (conceptual value) remains the same.  

This allows the single Datum to be be ‘followed’ across different data structures. This differs from 

approaches used in many other similat models, including other DDI products (e.g., DDI Codebook, DDI 

Lifecycle) where some of this information was attached at a higher level (typically the data set or 

record). DDI-CDI is a little more explicit than GSIM in describing the conceptual value and its 

representation, the instance value. As an information model, GSIM does not deal with the details of 

physical representation of data.  DDI-CDI needs to be able to describe representation in more detail. 

A Datum populates a cell of a dataset, database table etc. The general idea in DDI-CDI is to be able to 

attach all necessary metadata to the single Datum so that it can be ‘followed’ across different data 

structures.  This differs from some other approaches used in other DDI products (DDI Codebook, DDI 

Lifecycle) where some of this information was attached at a higher level (eg, the data set or record).  

 

Figure 10: Datum and its connotations 

2. Keys 
Another central concept for Data Description is that of the Key. In the model a Key is used for the 

identification of data and may comprise a set of Key members or be a unitary value. Figure 11 below 

shows how an InstanceValue is linked to a Unit (an individual or object of interest) via a Key that 

identifies the DataPoint where the InstanceValue is stored.   

A Key is defined as a collection of data instances that uniquely identify one or more data points. A 

KeyMember is a single data instance that is a part of an aggregate key. 

 

This circle represents a datum, “73,7” is its representation. 
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Figure 11: Key 

 

3. Data Structure Components 
 

A third feature are DataStructureComponents, allowing the  RepresentedVariables to take different 

roles. Each data structure type - Wide, Long, Multi-Dimensional and Key-Value - has its own set of 

DataStructureComponents, with some being common across data structure types. The components 

which reflect roles are the IdentifierComponent, AttributeComponent and MeasureComponent. The 

roles allow a RepresentedVariable to serve as a Measure in one context and as an Identifier in a 

different context, for example. This will be detailed below in the description of the different data 

structure types.  

Roles allow users to assign different functions to variables according to their context of use. Roles are 

not inherent in variables but can be imposed on them. In DDI-CDI there are currently three roles: 

• Identifier - An identifier role that serves to differentiate one record from another. More 

than one variable may be used in combination to produce a compound identifier. 

• Measure – Variables tagged with the measure role represent the values of interest. 

• Attribute – The attribute role serves to provide information about the measures of 

interest. Variables might, for example, describe the conditions of a measurement. This 

way attributes can be used to link metadata or paradata to the Measure of interest. 

A variable may take on different roles in different contexts. 

E. Wide Format (Unit Record Data Structure)  

1. Example 
 

A Unit Record data table, as shown in Figure 12, is a common way to organize data. Each record has a 

set of observations about a single unit. The record has a unit identifier and a set of measures and/or 

descriptors which are the same for each unit. The unit identifier can be used as an identifier for the 

record, because each unit has only one. This structure is also referred to as a rectangular data file.  

class Key

DataDescriptionPattern::

Key

AnnotatedIdentifiable

Conceptual::Unit

+ definition: InternationalStructuredString [0..1]

+ displayLabel: LabelForDisplay [0..*]

+ name: ObjectName [0..*]

DataDescriptionPattern::

KeyMember

Identifiable

DataDescription::

InstanceValue

AnnotatedIdentifiable

DataDescription::

DataPoint

0..*

has

0..1

0..1

isStoredIn

0..1

0..*

correspondsTo

0..1

1

identifies

1..*
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Figure 12:  Unit record data table 

The objects of the Wide format Unit Record data table are UnitDataRecords, Variables and 

InstanceValues. In the Wide format the rows correspond to each unit record, which is a set of 

InstanceValues for one entity. The columns correspond to each variable measure or categorization. Cell 

entries are InstanceValues. 

A cell in the Unit record table is an intersection between a column representing a variable and a row 

representing a measurement unit. See for example ‘8.1.1929’ in Figure 13 (yellow highlighting). 

Each cell of the table contains an InstanceValue. ‘Marie’ and ‘Henry’ (green highlighting) are identifiers 

for each of the records. ‘Sex’, ‘Longevity’ etc. are variables (blue) and ‘Female’ and ’78.8’ are example of 

InstanceValues (red).  

 
Figure 13: Wide format object 

The WideDataSet contains DataPoints, all the ‘cells’ in the table. Columns are variables, and each row 

contain the DataPoints for one Unit. Some of the DataPoints contain values keys that identify the 

DataPoints common to an individual row of the table. A WideKey can have more than one Member - e.g. 

more DataPoints which act as identifiers. This will be further explained below. 

2. Discussion of Structure and Diagrams – Wide 
A Wide table row is further structured by three DataStructureComponents types: 

○ IdentifierComponents -  the DataPoints which serve to identify the row. 

○ MeasurementComponents - the DataPoints in each row which contain the measures of 

interest. 
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○ AttributeComponents  - DataPoints which provide context for the MeasureComponents.  

RepresentedVariables provide SubstantiveValues for a WideKeyMember. 

In the example dataset displayed in Figure 14 below the “PersonID” column contains DataPoints that 

contain the key values that identify a row and also correspond to a Unit.  

The DataPoint in the upper left of the table contains the key value “Marie”. That DataPoint identifies the 

other DataPoints also associated with the person named “Marie”, the DataPoints in the first row of the 

table.  

A WideKey can be composed of more than one WideKeyMembers. Our table might have, for instance, 

have contained another column like “Family” so that we could identify the Marie in a particular family. 

(This might be important in a data set which had more than one unit named “Marie”.) 

A row of the table is also further structured by DataStructureComponents.  

These are defined by RepresentedVariables, which in turn provide the SubstantiveValueDomain (often a 

Codelist) for a WideKeyMember. 

 

Figure 14: Wide structure 

 

In the figure above, PersonID is an identifier for a person, Sex, Born, Died, and Longevity and RefArea 

are the measures of interest. 

These roles are not fixed. For another purpose, RefArea might be considered an attribute of the 

measures. Roles are often slightly different when the same data is viewed using different formats 

(PersonID is the only identifier needed for the Unit Record format above – when expressed in a Long 
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format, it would be only one needed component of a compound identifier – more than one variable 

would take on the role of identifier. (See RAIRD example, below). 

The diagram in Figure 15 below shows the DDI-CDI classes used to represent unit data in wide format. 

This is probably the most common layout for data – the traditional table of data as used in many 

statistical packages and spreadsheet programs. Columns are variables and each row contain the 

DataPoints for one Unit.  

 

Figure 15: WideStructure 

 

class WideStructure

Identifiable
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InformationObject
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1..*

0..*
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0..*
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0..1

0..*
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0..*

0..*
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1
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0..1

0..*
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0..1

0..1
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1..*

0..*
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F. Long Data Format  

1. Example 
The same data as in the Wide example can be expressed in a different format called Long as shown in 

Figure 16 below. This format is often used to express event data.  

In the Long format columns correspond to each kind of object in a Wide (unit record) description. Each 

row now contains a unit identifier, a variable identifier, and a data point with an instance value. 

The rows correspond to each value of each (non-identifying) variable for each Wide record. 

 

Figure 16: Long format 

In pure form, each row of a long structure contains a DataPoint with the value of interest (the instance 

value) along with identifiers for a unit and a column with a code that identifies the variable (VariableRef 

above) that associates with the value in the value DataPoint. In the figure above the Value column 

contains DataPoints with values from more than one variable, Sex, Born, Died, RefArea, and Longevity. 

Note that there may be many rows for a unit (like for “Marie”). There can also be columns containing 

attribute values. The “Verified” column is an attribute that indicates whether the value in the Value 

column has been verified. 
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Here we can see how a complete record for one unit from our Wide example might be represented: 

each column in the Wide format for a single row becomes a row in the Long format (see 

Transformations between Data Structures, Examples, below).   

 

2. Discussion of structure and diagrams – Long 
 

  

The high-level view of the long model is shown below. Each DataPoint in the dataset is based on one of 
five data structure components. Each component is associated with a RepresentedVariable that can 
define a column in the tall table.  
 
These perform the following functions: 
 
• IdentifierComponent – one of possibly several components that together identify the Unit associated 
with the measures and attributes. In the example above this is the CaseID column in Figure 16. 
 
• MeasureComponent – a measure just like in the wide layout. This allows a hybrid wide-tall layout. 
There is no such column in the example above if there were the values for the Marie rows in Figure 16 
would all be the same. 
 
• AttributeComponent – an attribute that annotates the associated measure values. This is the Verified 
column in Figure 16. 
 
• VariableDescriptorComponent – an indicator of the InstanceVariable in each associated  
VariableValueComponent DataPoint (see Diagram). This is the VariableRef column above. In the first row 
the code “Sex” indicates that the value “Female” is associated with the variable named “Sex” used in the 
Wide table. Note that this component has an association to a specific VariableValueComponent. 
 
• VariableValueComponent – defines a column that has a value associated with the value in the  
VariableDescriptorComponent. This is the Value column above. The “3.3.1932” is interpreted as the date 
that Marie was born. This column will have to have a datatype as generic as needed to hold all of the 
values from the set of variables indicated in the VariableDescriptorComponent. In the example above 
there is a mix of numeric (Longevity), Date (Born, Died), character (Sex), and geographic codes (RefArea) 
variables. A character datatype for the associated RepresentedVariable would be required. In many 
statistical platforms there are tools to reshape data between wide and long format. Many have 
restrictions that would force all of the measure values to have the same datatype (e.g. all numeric). 
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Figure 17: LongStructure – overall diagram 

On the right side of Figure 17 we the different data structure components described above are shown.  

The left side displays how the Long Key identifies the DataPoint and brings it together with the other 

components. 
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Figure 18: Long format – LongKey diagram 

The diagram in Figure 17 conceals some of the complexity involving the association between the 

LongKey and the LongKeyMember. The LongKey (Figure 18) is actually a composite of LongKeyMembers, 

each of which is based on one of the five component types. A LongKey could include, for example, two 

IdentifierComponents, such as Household and personInHousehold.  

The long layout brings out the utility of the Datum based approach and the use of keys to describe data. 

In the long dataset example seen below the values of the “Value” column are in a different conceptual 

domain in each row. A traditional variable having one conceptual and one value domain makes no sense 

for the column. 

The VariableRef column contains the VariableDescriptorComponents of the compound key describing 

the InstanceValue in each row of the value column.  The column VariableRef itself is a 

DescriptorVariable that can be described as having codes that point to InstanceVariables. In the 

highlighted cell in that column “Born” is a code for an InstanceVariable that describes dates of birth. The 

other two columns are associated with InstanceVariables that could appear in a wide layout. CaseID 

contains id values each of which is an IdentifierComponent of the compound key. Verified contains 

AttributeComponents of the key.  Together the compound key of “Marie”, “Born”, and “TRUE” provides 

context for the highlighted InstanceValue of “3.3.1992”. They allow it to associate it with the “3.3.1992” 

in the “Marie” row of the “Born” column of the wide example table above. 

 

class LongKeyDiagram

InstanceValue

LongMainKeyMember
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Figure 19: Long table components 

The VariableDescriptorComponent diagram below shows how the VariableDescriptorComponent relates 

to other components of the model. 
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Figure 20: VariableDescriptorComponent diagram 

G. Multi-Dimensional Format 

1. Example 
Sometimes data are presented in dimensional form. In the example below (Figure 21) there are three 

dimensions: geographic, with Categories of Newport, Cardiff, Monmouthshire, and Merthyr Tydfil.; 

temporal, with categories like 2004-2006; and gender, with categories of Male and Female. The numeric 

values in the cells are often aggregates computed on some variable or combination of variables, in this 

case the mean of longevity. Cells might also contain direct measurements such as with data from an 

experiment with a factorial design. Dimensional data are commonly displayed in a dimensional table like 

a pivot table. 

class VariableDescriptorComponent

DataStructureComponent

VariableDescriptorComponent

DataStructureComponent

VariableValueComponent

DescriptorReferenceValue

RepresentedVariable

DescriptorVariable

RepresentedVariable

ReferenceVariable

SubstantiveValueDomain

DescriptorValueDomain
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1
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0..*
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Figure 21: Dimensional data presented in tabular form 

2. Discussion of structure and diagrams – Dimensional  
A cube is a multi-dimensional array of cells (DataPoints). Values in the cells may be the result of an 

aggregate computation or a direct measurement.   

At a logical level the structure of the cube is defined by a set of Dimensions (the 

DimensionalDataStructure in the diagram below).  
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Figure 22: DimensionalStructure - details 

Each dimension (DimensionComponent) is, in turn structured by a SubstantiveValueDomain and  
defined by a RepresentedVariable. The latter also brings along the specification of a Universe and a 
Concept.  A Dimension can be categorical, for example (“Male”, “Female”). In this case the 
SubstantiveValueDomain would consist of a Codelist.  Typically cubes containing aggregate  
data would have primarily (or only) categorical dimensions. A DimensionComponent might also have a  
described value domain. Experimental data might, for instance, employ an independent variable  
measured as a real number (e.g. person’s weight).  
 
While there may be some underlying continuous variable for a Dimension, a Dimension may often be 
delineated by discrete dimensional categories. Time, for example, is a continuous measure. In our cube 
example, though, it has been transformed into a set of three-year categories like 2004-2006. This, along 
with the other two dimensions (gender, and geography), allows for the delineation of discrete cells in a 
table. Note that the time periods in this example (Figure 22) overlap. 
 
The DimensionalComponents form the basis for keys. A DimensionalKey is a composite of one value 
from each SubstantiveValueDomain of a DimensionComponent. This composite DimensionalKey 
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identifies the location of a DataPoint in the dimensional structure. Our example cube, for example, 
contains mean longevity data measured on people of Wales. The DataPoint (cell) identified by the key 
value (2006 – 2008, Female, Newport) is associated with that subset of people. 
 
Partial Keys – in which only a subset of the DimensionalKeyMembers have values specified for them – 
can be used to refer to regions (or “slices”) within the cube. (DDI-CDI does not explicitly model this; it is 
left to implementations to handle partial Keys if this is useful or required.)  
 
Each DimensionalKeyMember (InstanceValue) of the DimensionalKey is also associated with the concept 
‘Male’ in a ConceptualValueDomain.  This would provide meaning for the DimensionalKeyMember in the 
case of an aggregate data set. 
 
Categories within the Dimension may be additive or not. In our example the geographic areas could be 
combined to create larger areas. The year range categories could not be combined in a straightforward 
fashion given that they overlap. 

 
Figure 22: DimensionComponents and DimensionalKeyMembers 
 
In addition to structure a cube has content. The CubeDataStructure also includes a MeasureComponent 

and an AttributeComponent. The MeasureComponent is defined by a variable for that value.  

A QualifiedMeasure as the measure for the whole cube (e.g. mean of longevity), while a ScopedMeasure 

is for each cell in a cube as its Population narrows the Universe of the Qualified measure 

There might also be Attributes associated with each cell in a cube. One example of an attribute might 

indicate whether the measure for the cell was imputed. 
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The DDI-CDI model bundles a number of information elements into an Instance Variable. While a cube 
like our example may have a measure with a single concept, each cell in the cube has a different 
Population.  The upper left cell in the example has a mean of longevity for Males in Newport in 2004-
2006. The cell just to the right of it has mean of longevity for Females in Newport in 2004-2006. The DDI-
CDI Dimensional model includes the notion of a ScopedMeasure for the InstanceVarriable for each cell 
in a cube and a  QualifiedMeasure as the measure for the whole cube. The ScopedMeasure has a 
Population which narrows the Universe for the QualifiedMeasure. This  
diagram (Figure 23) shows how those fit into the model. 
 

 

 

Figure 23: DimensionalMeasures 
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Each cell in the cube’s DimensionalDataStructure can have not only measures associated with it, but also 
attributes (see diagram below).  
 

 
Figure 24: DimensionalPatternDiagram 

 
The table below shows a long representation of a cube with three DimensionalComponents, one 
MeasureComponent, and two AttributeComponents. The attributes in this case indicate revised data in 
the cells of the cube, identified by vintage, and with an indication of what revision process took place. 
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Figure 25: Attribute components for a cube – long representation 
 
In the diagram below, we can see that multiple Datums can exist for those cases where there are 
revisions: these would share a Key but would be distinguished by the vintage property associated with 
each RevisableDatum.  
 
While such revisions can be handled in other ways using this model (a time stamp associated with the 
observation – observation period -  functioning as a dimension, for example) many systems use the 
approach modeled here, and do not manage revisions as part of the dimensionality of their data. The 
requirement is that two values with identical Keys be distinguishable – this model includes 
RevisableDatum to support those systems which require it. 
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Figure 26: DimensionalRevisions 

 

H. Key-Value Format  

1. Example  
A Key-Value store represents a repository holding data as a set of pairs, a key – the InstanceKey - and its 

associated value, a DataPoint. The DDI-CDI model is shown in figure 14. A key is a unique value that 

allows look-up of its linked value. The DDI-CDI model includes a KeyValueDataStore which contains the 

key-value pairs.  

There are many possible ways to compose keys. The KeyValueDataStore may be divided into contexts, 

within which all of the subordinate keys are unique. The subject of the data – either a Unit or Population 

– can be contained as a component of the key. When this is a population, this portion of the key may 

itself be composed of the dimensional identifiers of the population, as for multi-dimensional data. Time 

may serve as a component of the key. Reference values may be used, as may variables. If needed, a 

“synthetic” component may be used, which holds no meaning but is unique within the context of the 

key. 

In the example below the data are stored as key-value pairs. The Key column contains InstanceKey 

values that identify the associated DataPoints. Looking at the data in Figure 27, the value “3.3.1992” 

could be associated with a key “Marie-Born” combining the unit identifier (“Marie”) and the variable 
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name (“Born”). The date 3.3.1932, for example is described by the InstanceKey “Marie-Born”. The cell 

containing 3.3.1932 is the DataPoint identified by the Key. This table, if combined with other data with 

keys composed in different ways, add a conxtext – a Contextual component – to the key to distinguish 

between the different ways in which data are being composed within the repository. 

The KeyValue structure can be used for data in data lakes, No SQL systems, and other forms of big data. 

 

 

Figure 27: Key-Value Store 

2. Discussion of structure and diagrams – Key-Value 
 
At its heart the Key-Value model is simple. A key identifies a value, and a set of these are help in a 
KeyValueDataStore. The key is represented in DDI – CDI as an InstanceKey, the value as a DataPoint. The 
structure of the KeyValueDataStore is known from the KeyValueStructure with which it is associated. 
 
It is possible to have more than one scheme for the composition of keys, by including in each a 
component which represents that scheme – or “context” – within which the key is unique. 
 
The diagram below gives an overview of the relevant classes in DDI – CDI: 
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Figure 28: KeyValue overall diagram 

InstanceKeys may be composed of a variety of different members: MainKeyMember, TimeKeyMember, 

and Descriptor are all used. These members are in turn composed of different StructureComponents 

according to rules which guarantee their uniqueness. 

The members which are used to compose an InstanceKey are shiown in the diagram below: 
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Figure 29: KeyValueInstanceKey  

The MainKeyMember is the most complex one. In the simplest case, it may be composed of a 

SyntheticIdComponent, which might be a GUID or similar identifier which is guaranteed to be unique, 

but serves no other purpose. IdentifierComponents may be used to provide unitary values which 

identify the Units of the value (that is, their subject). Similarly, Units and Populations may be identified 

using DimensionComponents, providing a compound key structure like that found for multi-dimensional 

data. If more than one approach to composing keys is used, each may be established as a “context”, and 

this can be added to the keys using the ContextualComponent. 

TimeKeyMembers are made up of TimeComponents, which may be anything with a temporal 

association (this can be an enumerated value such as “Valid”, a timestamp, or any other time-related 

value.) 

Descriptors use the VariableDescriptorComponent, which brings together AttributeComponents and 

MeasureComponents (as for the Long Data structure). Descriptors are associated with a ReferenceValue 

– that is, the value held as an instance of the component being used to compose the key. (In our 

example, the variable “Born” could be a column in a Wide table, or a value in a Long table in the 

VariableDescriptor column. For Key-Value data, it is used as a Member in composing the Key.) 

The StructureComponents making up the various Members may be seen in the diagram below: 
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Figure 30: KeyValueComponents  

A Key has a structure consisting of all of these components. 

H.    Physical Data Set (Wide Format) 
 

The PhysicalDataSet diagram below shows the relationship of the PhysicalDataSet to other classes. A 

PhysicalDataset is a set of record segments (PhysicalRecordSegments). In older data files it was common 

to have a record (a row of a table) that was represented as a sequence of shorter records (e.g. strings) 

due to constraints imposed by the physical media. A record, for example, of 150 characters required two 

80 column cards. A property of the PhysicalDataSet signifies the number of segments per record. 
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The order of the PhysicalRecordSegments is specified by a set of PhysicalRecordSegmentPositions, each 

of which having an integer describing the position of the segment in the dataset.  

 

 

Figure 31: PhysicalDataSet overall diagram 

The PhysicalRecordSegment is composed of DataPoints. A DataPoint contains an InstanceValue. In a text 

file the InstanceValue would be a substring of the string comprising the PhysicalRecordSegment. In a 

binary file it would be a sequence of bits within a larger sequence of bits.   A DataPoint is described 

conceptually by an InstanceVariable. It is identified and set into context by a Key. The example below, 

for a traditional rectangular table, uses a WideKey. 

The DataPoint is also described by a ValueMapping.  For a string representation this contains 

information like the separator used for the decimal part of a number (defaultDecimalSeparator), or the 

maximum length of the string (maximumLength), etc. 
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Figure 32: PhysicalRecordSegment diagram 

 

 In a text file the InstanceValue in a DataPoint is a  substring of the PhysicalRecordSegment string itself. 

In a delimited file like a  CSV file, the separation of those sequential substrings is indicated by delimiters. 

The PhysicalSegmentLayout contains information about those delimiters, the encoding of the record 

segment, whether text values are enclosed in quotes, etc.. 

 For a fixed width file the ValueMapping can point to a SegmentByText object that contains information 

like the starting position (startCharacterPosition) and ending position (endCharacterPosition) of the 

substring within the segment. There is a parent class, PhysicalSegmentLocation, that will allow for 

description of data location in other types of media than text files. In a binary file this might be starting 

byte number and ending byte number.  A video clip within a larger video file might be described by a 

start time and end time or by start and end frame number. 
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Figure 33: PhysicalSegmentLayout diagram 

I. Transformations between Formats/Examples 

1. Wide and Long: Correspondence between Unit record data and data in a Long format  
Figure 34 below shows the mapping between the Wide Unit record format and the Long format. We see 

that all combinations of variables and values for each unit record identifier are retained. Each value in 

the record for Marie now has its own row, with a second value – the Unit Variable – telling us what the 

value is (the column in the Wide table). The cell value is the InstanceValue. 
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Figure 34: Transformations from Wide to Long format. 

The VariableDescriptorComponent allows for the tracking of Datums between traditional wide layouts 

like the unit record format and Long layouts as shown in the Figure 34 example. All of the popular data 

analysis platforms have procedures like the R and Stata “reshape” function, or SAS PROC Transpose, that 

transform data tables back and forth between the two layouts. DDI – CDI provides a way to record this 

metadata which is not typically supported by non-proprietary formats. 

Some types of data, like event data, typically employ Long layouts for the flexibility of adding measures 

and for the ability to represent sparse structures economically. Documenting these layouts with earlier 

versions of DDI (e.g., DDI Codebook, DDI Lifecycle) has been problematic. Columns like “Value” in the 

Long layout example cannot be described as a traditional variable with a single value domain. They are 

instead a set of Datums having different conceptual domains and representations.  

The ValueMapping attached to the DataPoint allows for description of the physical representation of the 

generic representations in the Value column. That column as a whole must have a common 

representation, like a text string or bit string, that is capable of representing all of the value types for the 

set of underlying InstanceVariable. 

2. Wide and dimensional: Unit record data tabulated into an aggregate data Cube 
Unit record data can be tabulated into cubes (aggregate/dimensional data). Data from the individual 

units contribute to the aggregates of a cube. We see that ‘Mary’, ‘Henry’ and the others contribute to 

the aggregate statistics of the cube. The appropriate Unit record datum are averaged, producing the 

datum for the cube cell. In the cube below Marie contributes to two different cells due to overlapping 

time periods, while Henry only contributes to one cell. 
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Figure 35: Unit record data transformed to cube data 

When computing a cube from the unit record data the value domains of some of the variables listed as 

measures above will correspond to dimensions of the cube. The categories of Sex, for example define 

the Sex dimension in the cube example. A computation on Died above would produce the time 

categories for the cube. The combination of dimension values for each unit (person here) would 

determine which set of units would contribute to the computation of the measure (Longevity here). 

  



 DDI - CDI: Integrating Data for Better Science 
 

54 
 

The SQL query that follows computes the cube data from the unit data: 

 create table WalesCube as 

 select Sex,RefArea, 

        case  

         when died >= '1jan2004'd and  died <= '31Dec2006'd   then "2004-2006" 

         when died >= '1jan2005'd and  died <= '31Dec2007'd   then "2005-2007" 

         when died >= '1jan2006'd and  died <= '31Dec2008'd   then "2006-2008" 

        else " " 

        end as TimePeriod, 

        mean(Longevity) as Longevity 

 

  from WalesUnitData 

  group by sex, TimePeriod, RefArea 

  ; 

The processing code used to perform aggregations can be expressed in many different forms, both 

standard and proprietary. The Process model of DDI – CDI is designed to work with these to connect the 

metadata describing the data (both pre- and post-transformation) with the relevant processing code. 

3. Long and Dimensional: Dimensional data represented in a Long data format 
As noted before dimensional data can be represented in a Long layout. In this case the measure 

corresponds to the QualifiedMeasure in the model. Its population is the whole set of observations in the 

cube. There could be an extra column to represent the vintage instance for the associated measure. The 

DDI-CDI model includes classes that can assign roles to variables. In this example the first three variables 

take on the role as an IdentifierComponent. The values (codes), like “Newport”, or “2005-2007”in those 

columns are the representations of IdentifierComponent in the model. The longevity variable has a 

MeasureComponent, and the revision variable is an AttributeComponent. The values (codes) like 

“Newport”, or “2005-2007”  in those columns are the representations of the IdentifierComponents in 

the model. 
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 IdentifierComponent  QualifiedMeasure      

Geography Gender Time Longevity Vintage 

NewPort Male 2004-2006 76.7 Aug-09 

NewPort Female 2004-2006 80.7 Aug-09 

NewPort Male 2005-2007 77.1 Aug-09 

NewPort Female 2005-2007 80.9 Aug-09 

NewPort Male 2006-2008 77 Aug-09 

NewPort Female 2006-2008 81.5 Aug-09 

Cardiff Male 2004-2006 78.7 Aug-09 

Cardiff Female 2004-2006 83.3 Aug-09 

… … … … .. 

Merthyr Male 2006-2008   Jul-09 

Merthyr Female 2006-2008   Jul-09 

Figure 36: Dimensional as Long 

4. Key-Value and Wide: Key-Value Stores in RAIRD 
The example bellow shows what a possible dataset based on the RAIRD information model might look 

like. (RAIRD is a project involving the compilation of data from a set of administrative registers in 

Norway into a resource which can be used securely through an online analysis package by researchers. 

The central compiled data store is similar to the example given here, but researchers perform analysis 

on Wide data sets derived from it. The data is a form of “event history” data, giving information about 

specific events and periods for the Units it describes.)  

RAIRD uses a hybrid form of Long and Wide layouts in that they add StartDate and EndDate as attributes 

that identify a value. In Figure 37 we recognize the crosswalk from the Wide Unit record data format to 

Long. StartDate and EndDate variables for each value are added additionally.  

The keyValue table expresses the collection of variables in a possible RAIRD data set and how they are 

ordered. Key values link roles to each of them. 

 

file:///C:/Users/user/Downloads/The%20RAIRD%20information%20model%20is%20an%20example%20of%20real%20life%20usage%20of%20the%20Variable%20Role%20feature
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Figure 37: Example from the RAIRD information model 

Here, we see that both CaseID and VariableRef function as identifiers – taken together, they uniquely 

identify a record in the Long format, and indeed as the identifier for a specific measure (the Value). 

5. Time Series 
With time as an attribute dimension in a full cube, a time series can be seen as a slice of the cube, 

holding the structural identifier values constant. In the example below geography and Gender are held 

constant and time varies across its possible values. The vintage column is added to indicate which 

revision of the data is being reported. 

 CellDefinition  QualifiedMeasure  
geography Gender time longevity vintage 

NewPort Male 
2004-
2006 76.7 Aug-09 

NewPort Male 
2005-
2007 77.1 Aug-09 

NewPort Male 
2006-
2008 77 Aug-09 

 

6. Key-Value Stores and Streams 
Streaming data may involve a flexible set of measures arriving at unpredictable times. Structures that 

may be useful for streaming data include the tall structure (like for event data) or a key value store. With 

a tall structure, measure variables may be associated with identifier variables (such as a sensor 

identifier) and attribute variables (such as time of measurement, time of receipt, and location of 

measurement). 
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Measures may involve datatypes note currently described in DDI (images, sound recording, etc.) but 

envisioned as potential candidates for inclusion in future. 

An example sensor observation from the W3C Semantic Sensor Network Ontology (SSN) 

(https://www.w3.org/TR/vocab-ssn/#iphone_barometer-sosa) is of a barometric pressure taken by an 

iPhone. The SSN RDF for the Observation is: 

<Observation/346344> rdf:type sosa:Observation ; 

  sosa:observedProperty <sensor/35-207306-844818-

0/BMP282/atmosphericPressure> ; 

  sosa:hasFeatureOfInterest  <earthAtmosphere> ; 

  sosa:madeBySensor <sensor/35-207306-844818-0/BMP282> ; 

  sosa:hasSimpleResult "1021.45 hPa"^^cdt:ucum ; 

  sosa:resultTime "2017-06-06T12:36:12Z"^^xsd:dateTime . 

 

A tall representation for the data might look like this, where the value atmosphericPressurehPa is a code 

that points to a variable that links to the Concept “earthAtmosphere” in units of hectoPascal (hPa). 

SensorID Property Time ResultingValue 

sensor/35-207306-844818-0/BMP282 atmosphericPressurehPa 

2017-06-
06T12:36:12Z 1021.45 

    

Figure 38: Sensor reading in Tall format 

 

 

 

A Key-Value representation might look like this. The SensorID and Property are concatenated into a 

single Key. The Key could be decomposed into the SensorID and Property components as needed. 

Key Time ResultingValue 

sensor/35-207306-844818-0/BMP282/atmosphericPressure 

2017-06-
06T12:36:12Z 1021.45 

   

Figure 39: Sensor reading in Key-Vaölue format 

IV. The Process Model 

A. Introduction 
The D - CDI Process model is a generic process model able to describe retrospectively a succession of 

activities. These activities may be a set of business processes described at a conceptual level and/or a 

set of concrete steps (and their steps, ad infinitum) that take InformationObjects as parameters. 

Additionally, these activities may be a succession of questions in a questionnaire. InformationObjects 

may include, data, structured metadata, and computer programs. 

https://www.w3.org/TR/vocab-ssn/#iphone_barometer-sosa
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Several forms of “succession” can be described. They fall into two categories – deterministic and non-

deterministic. Deterministic succession may be parallel or sequential. Non-deterministic succession may 

be temporally ordered using algebras like Allen’s interval algebra. Alternatively, non-deterministic 

succession may be governed by inference engines that form the basis for rule-based systems.  

Generally speaking, each type of succession is supported by a set of control constructs. Together the 

control constructs form a plan or program that orchestrates a workflow. Depending on the control 

constructs, there are a myriad of workflow patterns. 

1. Relation to other standards 
There are several models currently in use which provide a strong basis for the DDI - CDI Process model.  

PROV-O is perhaps the best-known of these, giving us a basic set of classes describing Activities (the 

things which are done), Agents (the people and organizations which do things), and Entities (the 

resources which are operated on/with and produced). This is an extremely general model, and one 

which was designed to be made specific for use in specific applications.  

Recently, PROV-O has been extended by ProvONE. ProvONE makes PROV-O data- and computer-

program-specific. In PROV-O, entities didn’t distinguish data at different level of specificityThe PROV-O 

Plan entity lacked the specificity to describe the structure of computer programs and the specific 

successions of activities (workflows) that programs create.  

Here is the ProvONE Conceptual Model: 

 
Figure 40: The PROVOne model 
 

DDI - CDI process descriptions can be understood as extensions of PROV-O and ProvONE. 

These extensions mostly take the form of ControlConstructs which DDI - CDI has borrowed from other 

products in the family of DDI specifications, notably DDI Lifecycle. DDI Lifecycle process components 

borrowed heavily from OWL-S, as shown below. (Notably, the Control Construct is a central feature of 

how DDI Lifecycle describes questionnaire flows.) 

https://www.ics.uci.edu/~alspaugh/cls/shr/allen.html
https://www.w3.org/TR/prov-o/
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html#controller-specification
https://www.w3.org/Submission/OWL-S/
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Figure 41: Control constructs mind map 

2. Aspects covered by the DDI - CDI Process model 
Currently “prospective provenance” and “process provenance” are not in scope. In prospective 

provenance plans and programs have a hand in guiding execution. Process provenance is about 

workflow evolution over time. Workflow evolution is integral to machine learning experiments which 

might evaluate a succession of workflows. (Workflow evolution may be addressed by DDI – CDI in 

future.) 

For now, the focus is “retrospective provenance” or, again, “data lineage”. When data lineage 

enumerates a set of beginning and intermediate on-ramps in a workflow, it is backward data lineage. 

When data lineage enumerates a set of off ramps for InformationObjects that have entered the 

workflow upstream, this is forward data lineage. The DDI - CDI Process model aims to be able to 

describe both backward and forward data lineage. 
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B. Process Model Conceptual Model Overview 
 

 

Figure 42: DDI - CDI Process model overview 

In the DDI - CDI Process model ControlLogic invokes Activities. Activities may take In and Out 

Parameters. InformationObjects are bound to these Parameters. An InformationFlowDefinition connects 

the Out Parameter(s) of one Activity with the In Parameter(s) of another Activity. These connections, in 

the aggregate, create Workflows. 

Note that an InformationObject may be data, structured metadata, or a program. 

C. Process Model Conceptual Model Detail 
Note that detailed documentation at for Data Descrition model  in DDI – CDI can be found in this 

package in the folder: \DDI-CDI Public Review 1\2 Model\Field-Level Doc\. 
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1. ControlLogic 
 

 

Figure 43: Process model control logic 

Deterministic ControlLogic consists of Sequences and ConditionalControlLogic. Sequences may contain 

Sequences and ConditionalControlLogic. ConditionalControlLogic comes in several types or flavors 

including If Then, Else, etc. ConditionalControlLogic also includes logical expressions that evaluate to 

true or false. Finally, ConditionalControlLogic may contain Sequences. 

class Process ControlLogic
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ControlLogic
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NonDeterministic ControlLogic has two subtypes – TemporalConstraints and RuleBasedScheduling. 

TemporalConstraints in turn has two subtypes – AllenIntervalAlgebra and TemporalControlConstruct. 

Both AllenIntervalAlgebra and TemporalControlConstruct use enumerations to qualify their type further. 

Note that AllenIntervalAlgebra is a calculus for temporal reasoning useful in describing complex pairwise 

temporal relationships across a group of Activities. TemporalControlConstructs, on the other hand, are 

useful in describing parallel processing. 

RuleBasedScheduling takes a RuleSet and InformationObjects as input and produces InformationObjects 

as output. RuleBasedScheduling may employ the assistance of one or more domain-specific curators to 

match the Rule’s conditions with real world facts or the current state of InformationObjects in the 

ResearchDataStore. 

2. C2Metadata Support 
DDI - CDI supports the work of the C2Metadata project. Both Activities and the Steps an Activity might 

contain in the Process Model host a Script made up of Commands. Each Command consists of 

programming language (specified in a codelist) and the Command content. Each Command may have 

multiple programming language / Command content pairs, which would be deemed equivalent (i.e., an 

executable STATA syntax example and its human-readable equivalent in SDTL – see the C2Metadata link 

above) .  

C2Metadata takes a Script and its Command as input and produces additional Command content as 

output. The input is the original programming language and its command content. The output is 

documentation of the input. C2Metadata output may be in several languages including SDTL – the 

Structured Data Transformation Language.  

 

 Alongside SDTL, C2Metadata produces documentation of Commands in natural language and DDI 

Lifecycle. 

3. Workflow 
ControlLogic (the “program”) in the DDI Process specification and all the deterministic and non-

deterministic logic that inherit from ControlLogic have a workflow attribute. workflow is typed as 

ExternalControlledVocabulary (a codelist). In fact, the Workflow Patterns Initiative (WPI) has created a 

compendium of 40+ WorkflowPatterns noting the motivation, context, issues, issue solutions and 

supporting products and platforms associated with each one. In the Examples Document there are many 

examples in which the ExternalControlledVocabulary is the WPI where the WorkflowPattern in play in 

the ControlLogic is one of the 40+ patterns that the WPI describes. 

http://c2metadata.org/
http://www.workflowpatterns.com/patterns/control/
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Several example WorkflowPatterns taken from the Workflow Patterns Initiative can be found below.  
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D.   Illustrative WDI Workflow Patterns 

  

Here is the flash animation of that pattern. 

http://www.workflowpatterns.com/patterns/control/basic/wcp1_animation.php
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Here is the flash animation of that pattern. 

http://www.workflowpatterns.com/patterns/control/basic/wcp5_animation.php
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Here is the flash animation of that pattern. 

A record of activities, agents and entities can be recorded in a Pathway, which provides the detailed 

provenance information for the data/metadata resulting from the process. 

The diagram below provides a detail look at this portion of the DDI 4 State Based Process Model. 

 

  

http://www.workflowpatterns.com/patterns/control/new/wcp40_animation.php
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Here is the flash animation of that pattern. 

 

http://www.workflowpatterns.com/patterns/control/basic/wcp3_animation.php

