
 DDI – CDI: Integrating Data for Better Science

 1

DDI Cross Domain Integration: Architecture and Alignment
with Other Standards

Contents
I. Overview .. 4

II. Alignment and Use of External and the DDI Family of Standards in DDI - CDI .. 4

A. Introduction ... 4

B. Relationship Types between Standards ... 5

1. UML Trace .. 5

2. Map .. 6

3. PlugIn ... 6

C. Alignment Specifics between DDI - CDI and other Standards in the DDI Family of Standards .. 7

1. DDI Codebook 2.5 (Nesstar Publisher) ... 7

2. DDI Lifecycle 3.2 Group Component .. 8

3. DDI Lifecycle 3.2 Conceptual Component and Logical Product Component ... 8

4. Structured Data Transformation Language ... 9

D. Alignment Specifics between DDI - CDI and External Standards ... 9

1. Dublin Core Metadata Initiative Metadata Terms ... 9

2. schema.org Dataset ... 10

3. PROV-O .. 11

4. ProvONE ... 12

 DDI – CDI: Integrating Data for Better Science

 2

5. GSIM Concept Group (1.2) ... 14

6. GSIM Structure Group (1.2) ... 14

7. GSIM Business Group (1.2) .. 14

8. ISO 17369 Statistical Data and Metadata Exchange (SDMX) ... 15

9. The RDF Data Cube Vocabulary (QB) ... 17

10. RAIRD Information Model .. 17

III. Design Patterns .. 18

A. Using the Collections pattern .. 18

B. Using the Data Description pattern ... 26

C. Using the Signification pattern .. 30

IV. UML Subset .. 32

V. Design Notes and Modelling Approach ... 32

A. Introduction ... 32

B. Type of Model .. 32

C. Model Transformations ... 34

D. Canonical XMI .. 34

E. Notes on Modeling... 35

1. Structural Items.. 35

2. Relationships .. 36

3. Data Type Definition .. 38

4. Naming Convention ... 39

F. Model Outline .. 40

VI. Appendixes ... 41

 DDI – CDI: Integrating Data for Better Science

 3

A. The DDI - CDI Upper Model Properties and their Sources by Property Group .. 41

B. DDI Codebook / DDI - CDI Upper Model Map .. 46

C. Another Codebook / Core Map .. 53

D. DDI - CDI Upper Model / Dublin Core Map .. 55

 DDI – CDI: Integrating Data for Better Science

 4

I. Overview
This document covers those aspects of DDI Cross Domain Integration (DDI – CDI) which deal with the internal design of the model for different

purposes, and with the way in which it is expected to be used in specific implementations which are platform- and syntax-specific.

As a platform-independent model (PIM), DDI - CDI does not contain all of the information which is needed in an implementation model. It is,

however, understood than implementers will wish to add additional information either to the model itself or one or more of its representations,

and a framework for doing so is provided. (See the Design Notes and Modelling Approach section below for more information on what is in this

review package.)

The DDI - CDI Model uses some patterns to assist in assuring that it retains internal consistency, and to make its structure consistent from the

perspective of users. This is done by employing design patterns for some key features of the model.

DDI - CDI is both designed to be used with other standards and specifications – notably other DDI specifications, but also others – and is itself a

user of classes from other standard models.

This document describes all of these features of DDI - CDI.

II. Alignment and Use of External and the DDI Family of Standards in DDI - CDI

A. Introduction
DDI – CDI is designed to support the integration of data within systems, and as such it is expected that the alignment and hand-off to other

standards will be significant. In order to understand what DDI – CDI does in relation to other standards and the information they provide, we use

an “Upper Model” which at this point is purely conceptual. (It is likely that in future this will become a more formal part of the DDI – CDI model,

but at this point is provided for informational purposes only.) The use of some form of Upper Model may be helpful in implementing DDI – CDI,

and the “Detailed Examples and Use Cases” document in this package provides an example of how this can be done.

 DDI – CDI: Integrating Data for Better Science

 5

Here is a figure that provides an overview of DDI - CDI and its relationship with other standards – both external standards like GSIM, PROV-O and

schema.org together with standards in the DDI family of standards including DDI Codebook, DDI Lifecycle and C2Metadata:

Note the different types of relationships various standards have with DDI - CDI: (UML) Trace, Map, PlugIn and Uses.

B. Relationship Types between Standards

1. UML Trace
The UML Specification 2.5.1 describes the (UML) Trace relationship as follows:

“Specifies a trace relationship between model elements or sets of model elements that represent the same concept in different models.

Traces are mainly used for tracking requirements and changes across models. As model changes can occur in both directions, the

directionality of the dependency can often be ignored. The mapping specifies the relationship between the two, but it is rarely computable

and is usually informal.”

https://www.omg.org/spec/UML/2.5.1/PDF

 DDI – CDI: Integrating Data for Better Science

 6

Because trace relationships are informal, they contribute to the understanding of what is intended in the DDI - CDI model. This may not be
sufficient to inform a mapping on the technical level. The trace relationship appears only in the documentary diagrams of the DDI - CDI
specification, and not in the canonical model expressed in UML (including the XMI expression).

In a second figure DDI - CDI Foundational Metadata which “traces” to the DDI 3.2 (Lifecycle) Conceptual Component and the DDI 3.2 (Lifecycle)

Logical Product is presented in more detail:

2. Map
In addition to (UML) Trace, there is also a Map relationship between a DDI - CDI component and another standard. In a Map relationship

corresponding properties and/or classes are noted together with information about quality of the match using SKOS terminology: exactMatch,

closeMatch, broadMatch and narrowMatch. Across a Map relationship it becomes possible to compute elements of one standard from the

other, depending on the quality of the match and the direction of the relationship.

3. PlugIn
PlugIn is another type of relationship. In a PlugIn relationship between UML classes and/or their properties it is possible to plug in components

from one UML model into another. PlugIn facilitates the constructions of unique profiles that are more or less in line with ISO 10000.

https://www.w3.org/TR/skos-reference/
https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:10000:-1:ed-4:v1:en

 DDI – CDI: Integrating Data for Better Science

 7

C. Alignment Specifics between DDI - CDI and other Standards in the DDI Family of Standards

1. DDI Codebook 2.5 (Nesstar Publisher)

a. Relationship with DDI - CDI: Map relationship with Upper Model

b. Description:

The DDI - CDI Upper Model includes a ResearchProgram class. It is composed of zero or more ResearchComponents that inherit from

ResearchProgram. ResearchProgram includes three property groups – about, buzz and credit. About refers to the function and/or coverage of a

ResearchProgram or ResearchComponent. Buzz refers to its social media profile – the audience, their comments, the reviews an audience might

publish and so forth. Finally, credit follows CRediT and the Contribution Role Hierarchy and specifies the roles humans and/or programs play in

the creation of a ResearchProgram and/or its ResearchComponents.

It is important to note that one or more of these property groups may be of use in other classes too. Consider a research center with a

ResearchProgram that builds many research products (ResearchComponents) where some of the ResearchComponents relate to other

ResearchComponent to form one or more time series and/or one or more sets of cross-sectional research products grouped by theme. The

https://ddialliance.org/Specification/DDI-Codebook/2.5/
https://casrai.org/credit/
https://github.com/openrif/contribution-ontology/blob/master/diagrams/ContributionRoleHierarchy.pdf

 DDI – CDI: Integrating Data for Better Science

 8

ResearchProgram and/or its ResearchComponents may be associated with a ResearchDataStore which contains InformationObjects we might

also want to credit and/or buzz and/or about. Indeed, this might as well be the case with data and metadata elements that compose these

InformationObjects too.

Currently, in the Core Foundational Metadata there is a citation class called Annotation from which most of the foundational classes inherit. This

complicates the foundational classes, one would like to say, immeasurably. As such, Annotation does not represent the future approach of Core

with citation. Instead the Upper Model is a laboratory DDI - CDI is using to hatch the future approach. In one approach the various property

groups might be implemented as a set of complex (structured) data types that other classes like ResearchProgram and ResearchComponent

might specify or not as properties. In another implementation citations might become plugins to the model from other models. And so forth.

A table of these properties and their sources by property group is included in Appendix (A).

Additionally, Appendix (B) is a map between Codebook and the classes and property groups from the Upper Model.

And Appendix (C) is a poster from a map between Codebook and the Core foundational classes. This map is noteworthy in several respects. First,

the map includes the paths one would follow through the foundational classes to get to the DDI - CDI foundational class property corresponding

to a DDI 2.5 “leaf” in Codebook. Secondly, these paths are model dependent so, for example, a change in the relationship between classes in the

model changes the map. And, finally, this map, using the paths, is machine actionable. This is in contrast to the map in Appendix (B) which is

more conceptual.

2. DDI Lifecycle 3.2 Group Component

a. Relationship with DDI - CDI: Trace relationship with Upper Model

b. Description:

The DDI - CDI Upper Model includes a ResearchProgram class. It is composed of zero or more ResearchComponents that inherit from

ResearchProgram. The DDI 3.2 Group component has a trace relationship with these two Core classes.

3. DDI Lifecycle 3.2 Conceptual Component and Logical Product Component

a. Relationship with DDI - CDI: Map relationship with Foundational Metadata (Concepts and Variables)

b. Description:

The map is a future because DDI Lifecycle 3.2 doesn’t support Statistical Classification the way it is supported in DDI Lifecycle 3.3 (in evaluation)

and the DDI - CDI Foundational Metadata

https://ddialliance.org/Specification/DDI-Lifecycle/3.2/
https://ddialliance.org/Specification/DDI-Lifecycle/3.2/

 DDI – CDI: Integrating Data for Better Science

 9

4. Structured Data Transformation Language

a. Relationship with DDI - CDI: Plugin relationship with Data Management Model

b. Description:

C2Metadata’s Structured Data Transformation Language (SDTL) is an independent intermediate language for representing data transformation
commands. Commands in four software packages (SPSS, Stata, SAS, and R) are translated into JSON schemas, which are machine actionable.

D. Alignment Specifics between DDI - CDI and External Standards

1. Dublin Core Metadata Initiative Metadata Terms

a. Relationship with DDI - CDI: Map relationship with Upper Model

b. Description:

The Dublin Core Metadata Initiative (DCMI) Metadata Terms is a superset of the Dublin Core Metadata Element Set (DCMES). Historically

speaking, these vocabulary terms – the core together with its extension -- are the basis for all digital resource description. Indeed, DCMES and its

DCMI Metadata Terms extension are core vocabulary terms in both DDI Codebook and DDI Lifecycle in the DDI family of products. DCMES and its

DCMI Metadata Terms extension are vocabulary terms that are also at the core of schema.org CreativeWork which, in turn, provides the context

in schema.org for the schema.org Dataset.

file:///C:/Users/jaygreenfield1/Dropbox/ddi/mrt/DDI%204%20Core%20Jan%2020%202020/at%20http:/c2metadata.gitlab.io/sdtl-docs
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://schema.org/CreativeWork
https://schema.org/Dataset

 DDI – CDI: Integrating Data for Better Science

 10

Previously, it was noted that the DDI - CDI Upper Model includes a ResearchProgram class which is composed of zero or more

ResearchComponents that inherit from ResearchProgram and that ResearchProgram includes three property groups – about, buzz and credit –

that are aligned with DDI Codebook. These same property groups are also aligned with DCMI Metadata Terms and a map between DCMI

Metadata Terms and the DDI - CDI Upper Model has been included in the Appendix (C).

2. schema.org Dataset

a. Relationship with DDI - CDI: Map relationship with Upper Model

b. Description:

schema.org is “a collaborative, community activity with a mission to create, maintain, and promote schemas for structured data on the Internet,

on web pages, in email messages, and beyond. In addition to people from the founding companies (Google, Microsoft, Yahoo and Yandex),

there is substantial participation by the larger Web community, through public mailing lists such as public-vocabs@w3.org and through GitHub.

See the releases page for more details” (from About schema.org).

The schema.org Dataset is “a body of structured information describing some topic(s) of interest” consisting of the Dataset context

(CreativeWork), the Dataset variables measured each of which has a PropertyValue that includes the value, its type, any semantics associated

with the type like codes and their concepts, a unit identifier, the measurementTechnique together with an extension mechanism whose use can

be determined by the community of practice.

A schema.org Dataset has several representations including JSON-LD. Using JSON-LD or another representation, Google Dataset Search “lets you

find datasets wherever they’re hosted, whether it’s a publisher's site, a digital library, or an author's personal web page.”

https://schema.org/Dataset
https://lists.w3.org/Archives/Public/public-vocabs/
http://github.com/schemaorg/schemaorg
https://schema.org/docs/releases.html
https://schema.org/docs/about.html

 DDI – CDI: Integrating Data for Better Science

 11

Note that a schema.org Dataset example markup represented in JSON-LD is included in the DDI - CDI Examples Document. This example is based

on the Health and Demographic Surveillance Systems (HDSS) event dataset schema that is widely used across much of Sub-Saharan Africa for

purposes of demographic surveillance.

3. PROV-O

a. Relationship with DDI - CDI: Trace relationship with Data Management

b. Description

In this specification, the standard states: “It provides a set of classes, properties, and restrictions that can be used to represent and interchange

provenance information generated in different systems and under different contexts. It can also be specialized to create new classes and

properties to model provenance information for different applications and domains.”

https://www.w3.org/TR/2013/REC-prov-o-20130430/

 DDI – CDI: Integrating Data for Better Science

 12

The intention of the recommendation is to provide an extensible model, which can be applied to different domains and systems. DDI - CDI uses
PROV-O in this way, by specializing specific classes to reflect those found in the DDI - CDI model.

PROV-O is expressed as an OWL2 ontology, rather than as a UML model. Classes depicted in the DDI - CDI diagrams represent the corresponding
classes as described in the PROV-O OWL2 definition, but the UML classes are created by the DDI - CDI to represent those classes – they are not a
formalism which can be taken directly from the specification in UML form. In DDI - CDI, the trace relationships typically represent specializations
of the more generic PROV-O classes, but would indicate that the properties and relationships of these classes can also be applied to the
appropriate DDI - CDI objects.

4. ProvONE

a. Relationship with DDI - CDI: Trace relationship with Data Management

b. Description

Recently, PROV-O has been extended by ProvONE. ProvONE makes PROV-O data and computer program specific. In PROV-O entities didn’t

distinguish data at different level of specificity. And the PROV-O Plan entity lacked the specificity to describe the structure of computer programs

and the specific successions of activities (workflows) that programs create. Here is the ProvONE Conceptual Model:

http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html#controller-specification
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html#controller-specification

 DDI – CDI: Integrating Data for Better Science

 13

 DDI – CDI: Integrating Data for Better Science

 14

5. GSIM Concept Group (1.2)

a. Relationship with DDI - CDI: Trace relationship with Concepts and Variables (Foundational Metadata)

b. Description

GSIM provides a reference model of all the information – data, metadata, metrics, etc. – used in statistical production by national statistical

agencies, and supra- and international statistical institutions. It is a product of the High-Level Group for the Modernization of Official Statistics

(HLG-MOS), coordinated by the UN Economic Committee for Europe’s Statistical Programme.

As a reference model, GSIM is primarily intended to facilitate more precise communication between implementers but does not serve directly as

an implementation standard. It is possible that DDI - CDI can be used as a model for the implementation of some GSIM constructs. GSIM is

modeled in UML, which makes the trace relationships function exactly as described in the UML specification quoted above. Correspondences

between DDI - CDI classes and those in GSIM are often very direct, as they often model identical phenomenon with different levels of focus.

Nuances of these relationships will be described on a class-by-class basis as appropriate in DDI - CDI.

GSIM consists of several groups including the Structure Group, the Business Group and the Concept Group. The GSIM Concept Group traces to

Concepts and Variables (Foundational Metadata) in DDI - CDI. Both the DDI - CDI Variable Cascade and the Datum constructs in DDI - CDI extend

the comparable classes from GSIM.

6. GSIM Structure Group (1.2)

a. Relationship with DDI - CDI: Trace relationship with Data Description

b. Description

See above for general information about the GSIM reference model. As described above, GSIM consists of several groups including the Structure

Group, the Business Group and the Concept Group. The GSIM Structure Group traces to Data Description in DDI - CDI. Data Description adds new

structure components to the group of structure components defined in the GSIM Structure Group enabling DDI - CDI to describe types of data

that GSIM does not describe.

7. GSIM Business Group (1.2)

a. Relationship with DDI - CDI: Trace relationship with Data Management

b. Description

See above for general information about the GSIM reference model. As described above, GSIM consists of several groups including the Structure

Group, the Business Group and the Concept Group. The GSIM Business Group traces mostly to Data Management in DDI - CDI. Data

Management traces to PROV-O and ProvONE more than it does to the GSIM Business Group.

https://statswiki.unece.org/display/clickablegsim/Concept+Group
https://statswiki.unece.org/display/clickablegsim/Structure+Group
https://statswiki.unece.org/display/clickablegsim/Business+Group

 DDI – CDI: Integrating Data for Better Science

 15

8. ISO 17369 Statistical Data and Metadata Exchange (SDMX)

a. Relationship with DDI - CDI: Map relationship with Data Description DimensionalDataSet

b. Description:

The current version of SDMX as of this writing is the 2.1 Consolidated version 2013. The SDMX Information Model provides a UML formalization
against which the DDI - CDI model can be mapped. Recall from Document Two (the Detailed Model) that DDI - CDI has a rich set of data structure
components that can be combined to define many dataset types including the dataset definitions supported by the SDMX Information Model.

https://sdmx.org/wp-content/uploads/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf

 DDI – CDI: Integrating Data for Better Science

 16

A map between the DDI - CDI DimensionalDataSet and components of the SDMX Information Model is under development.

 DDI – CDI: Integrating Data for Better Science

 17

9. The RDF Data Cube Vocabulary (QB)

a. Relationship with DDI - CDI: Trace relationship with Data Description DimensionalDataSet

b. Description:

The RDF Data Cube Vocabulary is based on the SDMX 2.0 standard and covers the description of multi-dimensional data sets. It provides a set of
classes and properties but does so without using any standard formalization. Consequently, the classes represented in the DDI - CDI model are
created by DDI - CDI to reflect Data Cube classes, but do not come from any specific published UML model. They will carry with them the
properties of the Data Cube classes when they appear in trace relationships with the DDI - CDI model.

10. RAIRD Information Model

a. Relationship with DDI - CDI: : Trace relationship with Data Description LongDataSet

b. Description

RAIRD supports the description of an event history dataset. In an event history dataset RAIRD builds on the GSIM datum-based data structure
and adds an event period such that all observations, regardless of type, may be represented as follows:

https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
https://statswiki.unece.org/display/gsim/RAIRD+Information+Model+RIM+v1_0

 DDI – CDI: Integrating Data for Better Science

 18

III. Design Patterns

A. Using the Collections pattern
DDI-CDI introduces a generic Collections pattern that can be used to model different types of groupings and aggregations of objects, from

simple unordered sets to all sorts of hierarchies, nesting and sequences.

 DDI – CDI: Integrating Data for Better Science

 19

A collection is basically a container, which could be either a set, i.e. unique elements or a bag, i.e. repeated elements. Collections can also be

extended with richer semantic, e.g. generic, partitive, and instance, among others, to support a variety of DDI 3.x and GSIM structures, such as

Node Sets, Schemes, Groups, sequences of Process Steps, etc. This pattern provides an abstraction to capture commonalities among a variety of

seemingly disparate structures.

A Collection consists of zero, one or more Members. A Member could potentially belong to multiple Collections. Sets are defined by setting the

duplicates property to false, bags by setting it to true. Membership in a Collection is maintained by a has aggregation.

List is an extension of Collection for sequentially ordered collections. It uses Position and its value property to indicate the location of a Member

in the sequence. Note that Position does not extend from Identifiable because it’s never managed independently from the List it belongs to.

 DDI – CDI: Integrating Data for Better Science

 20

A Collection is also a Member, which allows for nesting of collections in complex structures. Members have to belong to some Collection, except

in the case of nested collections where the top level is a member that doesn’t belong to any collection. In addition, IndividualMember can be used

to indicate that the member is not itself a Collection.

This pattern can be used via a special type of association called refine. DDI-Core uses refine to say that a group of class “behave” like the Collections

pattern.

Refine is a sort of weak realization. To refine this pattern, all classes involved must be associated in a way that is compatible with the pattern. As

a rule of thumb, a more restrictive type of association than the one that appears in the pattern is compatible, a looser one is not. For instance,

since a Collection uses a has aggregation to identify its member, classes realizing the pattern need to be related by either an aggregation (same

type) or a composition (more restrictive). In addition, the association has to be in the right direction, so that the class refining Collection is the

“whole” (the diamond end) and the class refining

Member is the “part”. Similar compatibility rules apply to cardinality. Furthermore, all associations must be refined, with the exception of IsA

associations, which are usually part of the pattern definition and do not apply to individual refinement in the same way. Renaming properties and

associations does not affect compatibility as long as the documentation clearly explains how they map to the association in the pattern.

For instance, consider the model diagram below. A Set is defined in this example as being composed of at least one Element, i.e. no empty Sets

are allowed, and an Element always belong to one and only one Set. This is indicated by the cardinalities on the has association. Consequently,

 DDI – CDI: Integrating Data for Better Science

 21

deleting the Set will also delete its Elements. Such definition is compatible with the Collections pattern and thus Set and Element can refine

Collection and Member, respectively. In contrast, Schema and XML Instance cannot refine the pattern because the Schema is not a grouping of

XML Instances so the notion of a Collection being a container of Members doesn’t hold.

 DDI – CDI: Integrating Data for Better Science

 22

Beyond the sequential ordering provided by List, the Collections pattern includes a Structure class that supports more complex structures and

orderings of members via MemberRelationship.

A Structure consists of one or more MemberRelationships, which are tuples linking Members at the end of the hasSource and hasTarget

associations.

A Structure can have a specification property, e.g. reflexive, symmetric, and transitive, a totality property, e.g. total or partial, and a topology

property, e.g. network, graph, lattice, tree, partition. These properties are defined by SpecificationType, TotalityType and TopologyType,

respectively. A Structure can also have semantics defined by an ExternalControlledVocabularyEntry.

 DDI – CDI: Integrating Data for Better Science

 23

A Structure is said to be total, if all members of the associated collection are related to each other (otherwise, it is said to be partial); symmetric,

if for any pair of members, a, b in the associated collection, whenever a is related to b then also b is related to a (otherwise, it is said to be anti-

symmetric); reflexive, if all members of the associated collection are related to themselves (otherwise, it is said to be anti-reflexive); and transitive,

if for any members a, b, c in the associated collection, whenever a is related to b and b is related to c then a is also related to c (otherwise, it is

said to be anti-transitive).

These characteristics can be combined to define different types of Structures, e.g. equivalence relations and partial order relations, among others.

Equivalence relations are useful to define partitions and equivalence classes (e.g. Levels in a StatisticalClassification). Partial order relations can be

used to represent lattices (e.g. class hierarchies, partitive relationships), parent-child relations can define trees and acyclic precedence relations

can represent directed acyclic graphs (e.g. molecular interactions, geospatial relationships between regions).

Let us illustrate how this model works with a simple instance. Consider a North American Industry Classification System (NAICS)

StatisticalClassification with ClassificationItems representing type of economic activity, such as Mining, Manufacturing, Finance, etc. The

following diagram shows how the statistical classification classes refine the Collections pattern.

 DDI – CDI: Integrating Data for Better Science

 24

Note that StatisticalClassification refines Collection and ClassificationItem refines IndividualMember. This means we can view

ClassificationItems such as Manufacturing, Machinery manufacturing, and Educational services in NAICS as Members organized in a hierarchy

by a ClassificationItemStructure which consists of a set of ClassificationItemRelationships representing the parent-child relationships between

 DDI – CDI: Integrating Data for Better Science

 25

items. For instance, <Manufacturing, Machinery manufacturing> is a ClassificationItemRelationship in which Manufacturing is the source and

Machine manufacturing is the target.

Note that by maintaining the hierarchy in a separate structure, i.e. ClassificationItemStructure, items can be reused in multiple classifications.

For instance, a NAICS variant groups economic activities into two main industry groupings: the goods-producing industries and the services-

producing industries. Because of the separation of hierarchy and categories, adding that high-level grouping doesn’t require a change in the

structure and definition of the underlying industry ClassificationItems.

 DDI – CDI: Integrating Data for Better Science

 26

B. Using the Data Description pattern
Another pattern in DDI-CDI is data description. This pattern organizes data into datasets and their data structures. DDI-CDI includes four basic

types of data sets: Key-Value, Wide, Long and Dimensional. All these types of data sets, and more, can be described with the same pattern.

A DataSet is an organized collection of data that consists of DataPoints and Keys. A DataPoint stores an InstanceValue, which is essentially a single

data instance. Within DataSets, DataPoints are uniquely identified by Keys, which are collections of InstanceValues and as such they are also stored

in other DataPoints. Each InstanceValue that forms part of a Key is called a KeyMember. For instance, a social insurance number and a date can

be two key members that together form a key which identifies data points containing blood test results of a patient. The set of data points identified

by a key constitutes a record or a row in rectangular data files and other traditional data structures. We don’t have an explicit notion of a record

in our model to support other types of flexible data organizations.

DataSets are further described by DataStructures. This model also supports schema on-read type of data description, in which data can be stored

with basic or no descriptive information and then descriptions can be added as necessary at the time of use.

 DDI – CDI: Integrating Data for Better Science

 27

A DataStructure consists of multiple DataStructureComponents defined by RepresentedVariables. Essentially, a data structure component is the

use of a represented variable in the context of a given data structure. These components could be of different types, the most common ones being

identifier, dimension, measure and attribute. For instance, the same marital status variable can play the role of a measure in one data structure

and a dimension in another. In such a case there are two DataStructure components, i.e. a MeasureComponent and a DimensionComponent, using

the same marital status variable.

Each DataPoint in a DataSet corresponds to some DataStructureComponent in its associated DataStructure. Note that the same DataStructure can

apply to multiple DataSets. Therefore, the InstanceVariable associated to each DataPoint needs to be related to the RepresentedVariable used by

the DataStructureComponent that corresponds to that DataPoint.

There is a similar relationship between KeyMembers and DataStructureComponents. Remember that KeyMembers are also InstanceValues and

they are based on some DataStructureCompoment. As such, a KeyMember is a value from some ValueDomain, which is the same ValueDomain of

the RepresentedVariable associated with the DataStructureComponent the KeyMember is based on. The diagram below shows these relationships.

 DDI – CDI: Integrating Data for Better Science

 28

In addition to identifying data points and relating to data structure components, a key is also related to either a Unit or a Universe. A Key

corresponds to a Unit when the DataPoints they identify contain microdata whereas it corresponds to a Universe when they contain

aggregate/macro data. Note that corresponding to a Unit (or a Universe) doesn’t mean uniquely identifying it, since different Keys can correspond

to the same Unit, like in a long DataSet where multiple rows correspond to measures related to the same Unit. The job of uniquely identifying

Units (and Universes) rests on the IdentifierComponents (and the DimensionComponents, respectively). Keys uniquely identify only sets of

DataPoints, which form records or rows.

As mentioned, Keys are groups of KeyMembers, which are InstanceValues coming from ValueDomains. As such, they usually have conceptual

counterparts called KeyDefinition and KeyDefinitionMember, respectively. A KeyDefinition conceptually define the DataPoints a Key identify. They

do that by grouping ConceptualValues (the KeyDefinitionMembers), which are concepts represented by the KeyMembers. In other words, Keys

are representations of concepts in KeyDefinitions. These concepts come from the ConceptualDomain of the ConceptualVariable associated to the

RepresentedVariable from whose ValueDomain KeyMembers take values from.

 DDI – CDI: Integrating Data for Better Science

 29

Let us see how this pattern works with an example. Consider a data cube that contains the average income and the total population by city. City

is a DimensionComponent and average income and total population are MeasureComponents. They are grouped into a CubeDataStructure which

structures a DimensionalDataSet. (CubeDataStructure is an extension of DimensionalDataStructure, which is a collection of dimensions that can

be reused and maintained separately.) DimensionalDataStructure refines DataStructure and DimensionalDataSet refines DataSet.

 DDI – CDI: Integrating Data for Better Science

 30

The rest of the pattern needs to be refined by the appropriate concrete classes. Key, KeyMember, KeyDefinition and KeyDefinitionMember are

refined by DimensionalKey, DimensionalKeyMember, DimensionalKeyDefinition and DimensionalKeyDefinitionMember, respectively. Note that

rather than being based on DataStructureComponent, a DimensionalKeyMember is based on DimensionComponent instead. That’s a valid

refinement of the pattern since DimensionComponent is an extension of DataStructureComponent. In this way, the refinement is more precise

than if it were based on DataStructureComponent.

C. Using the Signification pattern
A Sign links a Signified with a Signifier that denotes it. A Signifier is a concept whose extension consists of tokens (perceivable objects). The Signified

is the concept being represented by a Signifier. For instance, the concept of integer five is the Signified and all its different representations are

tokens of its Signifier.

Signifier, Sign and Signified become part of the DDI-CDI signification pattern.

A Datum is an example of a Sign that links an InstanceValue with a ConceptualValue. An InstanceValue is a single data instance as it appears in a

DataPoint. It’s the representation of a concept, more precisely of a ConceptualValue, which is a concept with the notion of equality defined. This

 DDI – CDI: Integrating Data for Better Science

 31

notion of equality is important when representing data since data needs to be copied and compared, which is only possible with some equality

operation. InstanceValue, ConceptualValue and Datum therefore refine Signifier, Signified and Sign, respectively.

The reason for making Signifier, Sign and Signified into a pattern to be refined as opposed to classes to be extended is that Concepts are not always

Signifieds, which is what a specialization would imply. In fact, a Concept is a Signified only if there is a Signifier that represents it. The refinement

means that the Concept is going to behave like a Signified only in the context of the pattern.

Another example of the use of the pattern is Code, which enters into the picture as a refinement of Sign. A Code then is a Sign that has Non-

Linguistic Signifiers and where the Signified is a Category (Concept). ClassificationItem is a similar refinement of Sign linking a Notation to a

Category. The Signifier in this case is Notation, which is just the representation of the Category within the context of a Code or a Classification

Item.

 DDI – CDI: Integrating Data for Better Science

 32

IV. UML Subset
Please see the document “UML Class Diagram - Practioner’s Subset for Data Modeling - Detailed List” in this package at \DDI-CDI Public

Review 1\1 Specification Documents\Supporting Documents.

V. Design Notes and Modelling Approach

A. Introduction
DDI-CDI follows a model-driven approach. Model Driven Architecture® (MDA®) is an approach to software design, development and

implementation spearheaded by the Object Management Group (OMG), a computer industry standards consortium. In the here used meaning, it

starts with a model of data and the description of it (the application's business functionality and behavior) using Unified Modeling Language

(UML). This model remains stable as technology evolves, extending and thereby maximizing software ROI (return on investment). Portability and

interoperability are built into the architecture.

DDI-CDI uses a subset of the Class Diagrams of UML version 2. This subset of UML class diagram elements (see preceding section) is intended for

data modeling. It focuses on core elements which are well known in object-oriented programming. The subset focuses on elements which

describe classes, their interrelationships, and their attributes. This subset enables simple modeling, easy understanding, portability to many UML

tools, and good mapping options to target representations. It is described in the document on “UML Class Diagram - Practioner’s Subset for Data

Modeling”.

The specification UML Version 2.5.11 is used as canonical UML specification. The namespaces of UML 2.4.1 and XMI 2.4.1 are used in the

representation as Canonical XMI. The version 2.4.1 is currently implemented in a larger number of UML tools. The namespaces of UML and XMI

can be changed to the ones of 2.5.1. The used subset of UML is defined identically in the UML versions 2.4.1 and 2.5.1.

B. Type of Model
In model-driven architecture, a distinction is made between the platform independent model (PIM) and the platform-specific models (PSM). The

PIM is translated to one or more PSMs.

1 UML 2.5.1, https://www.omg.org/spec/UML/2.5.1/PDF

https://www.omg.org/spec/UML/2.5.1/PDF

 DDI – CDI: Integrating Data for Better Science

 33

DDI-CDI uses this approach to make a distinction between the PIM (for conceptual purposes), the generic PSM (for multiple syntax

representations with an object-oriented approach), and dedicated PSMs for specific syntax representations (encodings). All models are realized

in UML. The PSMs are using the UML subset mentioned above.

PIM, PSM, and syntax representations in DDI-CDI (grey parts are not active yet):

Only the generic PSM exists currently and the derived XML Schema representation. The specific PSM for XML Schema is identical to the generic

PSM.

The OWL/RDF representation is in the works.

The current model development was done in the generic PSM. It is planned for the future that the model development is done in the PIM which

is then translated according to a set of business rules to the generic PSM. The differences between the future PIM and the generic PSM might

comprehend for example navigability and multiplicity in associations.

 DDI – CDI: Integrating Data for Better Science

 34

The UML tool Sparx Enterprise Architect2 is used for the development of the generic PSM. The generic PSM is available as Enterprise Architect

file. It can be viewed with the freely available viewer Enterprise Architect Lite3.

C. Model Transformations
The transformation from the generic PSM to the XML Schema is done with XSLT programs. The Canonical XMI representation of the PSM is the

input to these programs.

Enterprise Architect can export an own flavor of XMI. This is transformed by a XSLT to Canonical XMI.

Transformation chain:

D. Canonical XMI
DDI-CDI is available as Canonical XMI. This enables the import of the model into common UML tools. These tools can be used to analyze the

model, to relate it to other UML models, and to generate syntax representations which are provided by these tools.

2 Sparx Enterprise Architect, https://sparxsystems.com/products/ea/
3 Enterprise Architect Lite, https://sparxsystems.com/bin/EALite.msi

https://sparxsystems.com/products/ea/
https://sparxsystems.com/bin/EALite.msi

 DDI – CDI: Integrating Data for Better Science

 35

The XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard for exchanging metadata information via Extensible

Markup Language (XML). The different vendors of UML tools have often XMI flavors which are specific to their tools. OMG proposed Canonical

XMI to improve interoperability.

“Canonical XMI: A specific constrained format of XMI that minimizes variability and provides predictable identification and ordering. The

constraints are detailed in Annex B.”4

The Canonical XMI is available in two kinds one has the same association names as in the Enterprise Architect file, one unique association names

across the model. The latter is intended for the transformation to XML Schema and for the import in some UML tools which complain about non-

unique association names. The background is that strict UML requires unique names per item type in one package. The unique association

names are constructed on the basis of the original association name plus the names of the connected classes.

E. Notes on Modeling

1. Structural Items

Package

• A package expresses a region of the interrelated content

• Packages (and classes) are named and organized in a way that they can be easily moved to another location of the model

o The name of each package is a unique name (in the scope of all items) in the whole model

Class

A class can be understood as a blueprint for an object. It describes the type of objects for which DDI-CDI is a model for.

• Classes (and packages) are named and organized in a way that they can be easily moved to another location of the model

o The name of each class must be a unique name (in the scope of all items) in the whole model

• Attributes are used

• Many classes have the attributes agency, id, and version. These items build a composite identifier aligned with the international

registration data identifier (IRDI)5. Instantiated objects of these classes can be globally uniquely identified by these identifiers.

This approach enables reuse of these objects on a granular level.

4 XML Metadata Interchange (XMI) Specification, Version 2.5.1, https://www.omg.org/spec/XMI/2.5.1/PDF
5 ISO/IEC 11179-6:2015, Information technology - Metadata registries (MDR) - Part 6: Registration, Annex A, Identifiers based on ISO/IEC 6523,
http://standards.iso.org/ittf/PubliclyAvailableStandards/c060342_ISO_IEC_11179-6_2015.zip

https://www.omg.org/spec/XMI/2.5.1/PDF
http://standards.iso.org/ittf/PubliclyAvailableStandards/c060342_ISO_IEC_11179-6_2015.zip

 DDI – CDI: Integrating Data for Better Science

 36

Attribute

A class attribute is typed by a data type.

2. Relationships

Association

Only binary associations are used, i.e. two classes are related.

A notion of direction is used in DDI-CDI to be able to properly name associations so that they read as semantic triple (subject-predicate-object).

Additionally, the direction is defined by a navigable association end at the “object” class. The association has unspecified navigability at the end

of the “subject” class.

Associations are rendered in diagrams by connecting classes with a line. The navigable end is indicated by an open arrowhead (→) on one end of

an association and owned by the class on the opposite end.

The definition of direction/navigation can be understood just as a recommendation, see also this citation from the official UML specification in

the section on the semantics of associations.

„Navigability means that instances participating in links at runtime (instances of an Association) can be accessed efficiently from

instances at the other ends of the Association. The precise mechanism by which such efficient access is achieved is implementation

specific. If an end is not navigable, access from the other ends may or may not be possible, and if it is, it might not be efficient.

NOTE. Tools operating on UML models are not prevented from navigating Associations from non-navigable ends.”6

“Specifying a direction of traversal does not necessarily mean that you can't ever get from objects at one end of an association to objects

at the other end. Rather, navigation is a statement of efficiency of traversal.”7

For specific uses, the direction of an association might not make sense. In this case, the navigation definition can be just ignored.

Association names should be unique in one package if possible. This is not always suitable in terms of achieving short names. Some UML tools

comply in a strict sense to the UML rule that elements of related or the same type should have unique names within the enclosing package. For

this purpose, a second representation of the model in Canonical XMI is provided which has unique association names per package.

6 UML 2.5.1, Semantics of associations, page 200, https://www.omg.org/spec/UML/2.5.1/PDF
7 The Unified Modeling Language User Guide, Booch, Grady; Rumbaugh, James; Jacobson, Ivar; Reading, Mass., 1999, page 144

https://www.omg.org/spec/UML/2.5.1/PDF

 DDI – CDI: Integrating Data for Better Science

 37

Multiplicity

Multiplicity is formally defined as a lower and upper bound. Simply put: a multiplicity is made up of a lower and an upper cardinality.

Cardinality is how many elements are in a set.

The default multiplicity of the “subject” class is 0..n. The multiplicity of the “object” class is usually 0..1 or 0..n. Zero for the lower cardinality
allows flexibility in the process of producing metadata.

Association rendering:

Aggregation

Any semantics in aggregation are not seen which are not already covered by a common association with appropriate directed names, but it

could provide a way of easily visualizing a whole/part relationship.

Aggregation rendering:

Composition

Composition is used for cases in which there is a strong lifecycle dependency, e.g. a cell in an array cannot exist without the array. However, it

could provide a way of easily visualizing strong lifecycle dependency.

Composition rendering:

 DDI – CDI: Integrating Data for Better Science

 38

Generalization

A class can be an extension of another class (the general class). Attributes and associations of the general class are inherited. Only single

inheritance is used, i.e. a class can only extend one other.

A data type can be an extension of another data type (the general data type). Attributes of the general data type are inherited. Only single

inheritance is used, i.e. a data type can only extend one other. This applies also to primitive data types and enumerations.

Class generalization rendering:

3. Data Type Definition

Data Type

A data type can be a UML primitive data type, a structured data type, or an enumeration.

The UML primitive data types8 are used: Boolean, Integer, Real, String, and UnlimitedNatural (the latter is only in XMI for the unlimited value of

an upper cardinality).

8 XMI representation of UML primitives, https://www.omg.org/spec/UML/20100901/PrimitiveTypes.xmi

https://www.omg.org/spec/UML/20100901/PrimitiveTypes.xmi

 DDI – CDI: Integrating Data for Better Science

 39

A structured data type can have multiple attributes which are defined by other data types.

Some XML Schema primitive data types9 are used. They are defined as UML primitive data types and defined semantically by the related XML

Schema data type definition. Following XML Schema primitive data types are used: anyURI, date, and language.

All structured data types make finally use of the mentioned four UML primitive data types and three XML Schema primitive data types.

The UML primitive data types can be mapped to XML Schema data types in representations where they exist like in XML Schema and OWL/RDF.

Mapping of primitive data types10:

UML XML Schema

PrimitiveTypes::Boolean http://www.w3.org/2001/XMLSchema#boolean

PrimitiveTypes::Integer http://www.w3.org/2001/XMLSchema#integer

PrimitiveTypes::Real http://www.w3.org/2001/XMLSchema#double

PrimitiveTypes::String http://www.w3.org/2001/XMLSchema#string

PrimitiveTypes::UnlimitedNatural http://www.w3.org/2001/XMLSchema#string

Comment

Each item can have a definition which is expressed as UML comment.

4. Naming Convention
All items are named according to rules aligned with ISO/IEC 11179-511. The names are possible compounds of multiple nouns and adjectives.

Instead of a separator, the first letter of each name part within a single name is capitalized (sometimes called CamelCase).

Names of classes, data types, and enumeration literals start with an uppercase letter. Names of associations and attributes start with a

lowercase letter.

9 XML Schema primitive data types: https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
10 UML 2.5.1, XMI Serialization of the PrimitiveTypes model library, page 754, https://www.omg.org/spec/UML/2.5.1/PDF
11 ISO/IEC 11179-5, Information technology - Metadata registries (MDR) — Part 5: Naming principles,
http://standards.iso.org/ittf/PubliclyAvailableStandards/c060341_ISO_IEC_11179-5_2015.zip

https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.omg.org/spec/UML/2.5.1/PDF
http://standards.iso.org/ittf/PubliclyAvailableStandards/c060341_ISO_IEC_11179-5_2015.zip

 DDI – CDI: Integrating Data for Better Science

 40

F. Model Outline
The model outline of the Canonical XMI representation is listed below. These packages are intended for the users of the model. The main

package “Classes” contains sub-packages with all classes for the three main areas foundational (Conceptual), data description (DataDescription),

and process/provenance (Process) and supporting areas. The main package “DataTypes” contains sub-packages with all supporting data types.

• DDICDILibrary

o Classes

▪ Agents

▪ Conceptual

▪ DataDescription

• Components

• Dimensional

• KeyValue

• Long

• Wide

▪ FormatDescription

▪ Identification

▪ Miscellaneous

▪ Process

▪ Representations

o DataTypes

▪ Enumerations

▪ StructuredDataTypes

▪ XMLSchemaDataTypes

The model as Sparx Enterprise Architect file has two additional packages: “Diagrams” which holds all diagrams used in the specification

document, and “DesignPatterns”, which supports mainly the specification developers.

• DDICDI

o DDICDIModels

▪ DDICDILibrary (see above)

 DDI – CDI: Integrating Data for Better Science

 41

▪ DesignPatterns

• CollectionsPattern

• DataDescriptionPattern

• SignificationPattern

o Diagrams

VI. Appendixes

A. The DDI - CDI Upper Model Properties and their Sources by Property Group

Upper Model Property12 Property Group Source(s)

about About schema.org CreativeWork,

abstract About schema.org CreativeWork, DC

accessMode About schema.org CreativeWork

accessModeSufficient About schema.org CreativeWork

accessRights About DC, DDI Codebook

accessibilityAPI About schema.org CreativeWork

accessibilityControl About schema.org CreativeWork

accessibilityFeature About schema.org CreativeWork

accessibilityHazard About schema.org CreativeWork

accessibilitySummary About schema.org CreativeWork

12 Generally speaking, the names of the properties have been adopted from schema.org’s CreativeWork. In the case that there is a single source other than
CreativeWork, the name of the property comes from the single source. One exception are properties whose names begin with the prefix sd. sd is an
abbreviation for structured data in CreativeWork. Structured data refers not to what a CreativeWork is about – the Dataset context -- but the CreativeWork
object itself. Codebook also makes this distinction. Some Codebook only properties have been added to the sd series. Definitions for each of the properties are
linked. The link goes to DCMI Metadata Terms when it is the origin or it has greater specificity. Otherwise the link goes to CreativeWork in schema.org. When a
property is sourced both to CreativeWork and DC (Dublin Core), review the Dublin Core / DDI Core Upper Model Map in this Appendix (C) to determine the
nuances of these relationships.

https://schema.org/about
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/abstract
https://schema.org/accessMode
https://schema.org/accessModeSufficient
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/accessRights
https://schema.org/accessibilityAPI
https://schema.org/accessibilityControl
https://schema.org/accessibilityFeature
https://schema.org/accessibilityHazard
https://schema.org/accessibilitySummary
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/isVersionOf
https://schema.org/CreativeWork

 DDI – CDI: Integrating Data for Better Science

 42

Upper Model Property12 Property Group Source(s)

accountablePerson Credits schema.org CreativeWork, DC

accrualMethod About DC

accrualPeriodicity About DC. DDI Codebook

accrualPolicy About DC

aggregateRating Buzz schema.org CreativeWork

alternativeHeadline About schema.org CreativeWork, DC

associatedMedia About schema.org CreativeWork, DC

audience About schema.org CreativeWork, DC

audio About schema.org CreativeWork, DC

author Credits schema.org CreativeWork, DC

award Buzz schema.org CreativeWork

character About schema.org CreativeWork

citation About schema.org CreativeWork, DC

citationRequirement About DDI Codebook

comment About schema.org CreativeWork

commentCount Buzz schema.org CreativeWork

concept About DDI Codebook

conditionsOfAccess About schema.org CreativeWork, DC

confidentiality About DDI Codebook

contentLocation About schema.org CreativeWork, DC

contentRating Buzz schema.org CreativeWork

contentReferenceTime About schema.org CreativeWork, DC

contributor Credits schema.org CreativeWork, DC

copyrightHolder Credits schema.org CreativeWork, DC

copyrightYear Credits schema.org CreativeWork, DC

correction About schema.org CreativeWork, DC

creativeWorkStatus About schema.org CreativeWork

creator Credits schema.org CreativeWork, DC

dataQualityMetrics About DDI Codebook

date About schema.org CreativeWork, DC

dateAccepted About schema.org CreativeWork, DC

https://schema.org/accountablePerson
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/accrualMethod
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/accrualPeriodicity
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/accrualPolicy
https://schema.org/aggregateRating
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/alternative
https://schema.org/associatedMedia
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/audience
https://schema.org/audio
https://schema.org/author
https://schema.org/award
https://schema.org/character
https://schema.org/citation
https://schema.org/comment
https://schema.org/commentCount
https://schema.org/conditionsOfAccess
https://schema.org/contentLocation
https://schema.org/contentRating
https://schema.org/contentReferenceTime
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/elements/1.1/contributor
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/rightsHolder
https://schema.org/copyrightYear
https://schema.org/correction
https://schema.org/creativeWorkStatus
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/creator
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/elements/1.1/date
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/dateAccepted

 DDI – CDI: Integrating Data for Better Science

 43

Upper Model Property12 Property Group Source(s)

dateCopyrighted About schema.org CreativeWork, DC

dateCreated Credits schema.org CreativeWork, DC

dateModified About schema.org CreativeWork, DC

datePublished About schema.org CreativeWork, DC

dateSubmitted About schema.org CreativeWork, DC

disclaimer About DDI Codebook

discussionURL Buzz schema.org CreativeWork, DC

editor Credits schema.org CreativeWork, DC

educationalAlignment Buzz schema.org CreativeWork, DC

educationalUse Buzz schema.org CreativeWork

encoding About schema.org CreativeWork, DC

encodingFormat About schema.org CreativeWork, DC

estimateOfSamplingError About DDI Codebook

exampleOfWork About schema.org CreativeWork, DC

expires About schema.org CreativeWork, DC

funder Credits schema.org CreativeWork, DC

genre About schema.org CreativeWork, DC

hasPart About schema.org CreativeWork, DC

headline About schema.org CreativeWork, DC

identifier About schema.org CreativeWork, DC

inLanguage About schema.org CreativeWork, DC

interactionStatistic Buzz schema.org CreativeWork, DC

interactivityType Buzz schema.org CreativeWork, DC

isAccessibleForFree Buzz schema.org CreativeWork, DC

isBasedOn About schema.org CreativeWork, DC

isFamilyFriendly Buzz schema.org CreativeWork

isPartOf About schema.org CreativeWork, DC

keyWords About schema.org CreativeWork, DC

learningResourceType About schema.org CreativeWork

license Buzz schema.org CreativeWork, DC

locationCreated About schema.org CreativeWork, DC

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/dateCopyrighted
https://schema.org/dateCreated
https://schema.org/dateModified
https://schema.org/datePublished
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/dateSubmitted
https://schema.org/discussionUrl
https://schema.org/editor
https://schema.org/educationalAlignment
https://schema.org/educationalUse
https://schema.org/encoding
https://schema.org/encodingFormat
https://schema.org/exampleOfWork
https://schema.org/expires
https://schema.org/funder
https://schema.org/genre
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/hasPart
https://schema.org/headline
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/identifier
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/language
https://schema.org/interactionStatistic
https://schema.org/interactivityType
https://schema.org/isAccessibleForFree
https://schema.org/isBasedOn
https://schema.org/isFamilyFriendly
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/isPartOf
https://schema.org/keywords
https://schema.org/learningResourceType
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/license
https://schema.org/locationCreated

 DDI – CDI: Integrating Data for Better Science

 44

Upper Model Property12 Property Group Source(s)

mainEntity About schema.org CreativeWork, DC

material About schema.org CreativeWork, DC

materialExtent About schema.org CreativeWork, DC

mentions About schema.org CreativeWork, DC

notesOnDataCollection About DDI Codebook

offers Buzz schema.org CreativeWork

position About schema.org CreativeWork

producer Credits schema.org CreativeWork, DC

provider Credits schema.org CreativeWork, DC

publication Buzz schema.org CreativeWork, DC

publisher Credits schema.org CreativeWork, DC

publisherImprint Credits schema.org CreativeWork

publishingPrinciples Credits schema.org CreativeWork

recodingAndDerivation About DDI Codebook

recordedAt About schema.org CreativeWork, DC

releasedEvent Buzz schema.org CreativeWork, DC

researchQuestion About DDI - CDI ResearchProgram and
ResearchComponent

researchHypothesis About DDI - CDI ResearchProgram and
ResearchComponent

responseRate About DDI Codebook

review Buzz schema.org CreativeWork

schemaVersion About schema.org CreativeWork

sdDatePublished About schema.org CreativeWork

sdIdentifier About DDI Codebook

sdLicense About schema.org CreativeWork

sdPublisher About schema.org CreativeWork

sdVersion About DDI Codebook

sdVersionNotes About DDI Codebook

security About DDI Codebook

sourceOrganization Credits schema.org CreativeWork

https://schema.org/mainEntity
https://schema.org/material
https://schema.org/materialExtent
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/references
https://schema.org/offers
https://schema.org/position
https://schema.org/producer
https://schema.org/provider
https://schema.org/publication
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/publisher
https://schema.org/publisherImprint
https://schema.org/publishingPrinciples
https://schema.org/recordedAt
https://schema.org/releasedEvent
https://schema.org/review
https://schema.org/schemaVersion
https://schema.org/sdDatePublished
https://schema.org/sdLicense
https://schema.org/sdPublisher
https://schema.org/sourceOrganization

 DDI – CDI: Integrating Data for Better Science

 45

Upper Model Property12 Property Group Source(s)

spatial About schema.org CreativeWork, DC

spatialCoverage About schema.org CreativeWork

sponsor Credits schema.org CreativeWork, DC

studyType About DDI - CDI ResearchProgram and
ResearchComponent

temporal About schema.org CreativeWork, DC

temporalCoverage About schema.org CreativeWork

text About schema.org CreativeWork

thumbnailURL About schema.org CreativeWork, DC

timeRequired About schema.org CreativeWork

translationOfWork About schema.org CreativeWork

translator Credits schema.org CreativeWork, DC

typicalAgeRange Buzz schema.org CreativeWork

unitOfAnalysis About DDI Codebook

universe About DDI Codebook

version About schema.org CreativeWork, DC

video About schema.org CreativeWork, DC

weighting About DDI Codebook

workExample About schema.org CreativeWork, DC

workTranslation About schema.org CreativeWork, DC

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/spatial
https://schema.org/spatialCoverage
https://schema.org/sponsor
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/temporal
https://schema.org/temporalCoverage
https://schema.org/text
https://schema.org/thumbnailUrl
https://schema.org/timeRequired
https://schema.org/translationOfWork
https://schema.org/translator
https://schema.org/typicalAgeRange
https://schema.org/version
https://schema.org/video
https://schema.org/workExample
https://schema.org/workTranslation

 DDI – CDI: Integrating Data for Better Science

 46

B. DDI Codebook / DDI - CDI Upper Model Map

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

1. Metadata
Production

Producer sdPublisher Codebook is

broader
Production Date sdDatePublished Codebook is

broader
DDI Document
Version

sdVersion Exact match

Version Notes sdVersionNotes Exact match

DDI Document ID
Number

sdIdentifier Exact match

2. Study
Description

Identification

2.1.1.1 Title Headline Exact match

Alternative Title alternativeHeadline Exact match

2.1.1.4 Translated Title translationOfWork Close match

2.1.1.5 ID Number identifier Exact match

2.1.5.1 Study Type typeOfResearch

(ResearchProgram,
ResearchComponent)

Codebook is
broader

2.1.5.2 Series Information isPartOf,

disambiguatingDescripti
on

Codebook is
broader

Version

version Exact match

2.1.6.1 Production Date datePublished Close match

2.1.6.3 Notes

not found in
schema.org

 DDI – CDI: Integrating Data for Better Science

 47

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

Overview

2.3.2 Abstract abstract Exact match

2.2.3.8 Kind of Data genre Codebook is

narrower
2.2.3.6 Unit of Analysis unitOfAnalysis Exact match

Scope

2.2.4 Description of

Scope
identifier extension
(PropertyValue)

Codebook is
narrower

2.2.1.2 Topics

Classifications
identifier extension
(PropertyValue)

Codebook is
narrower

2.2.1.1 Keywords keywords Exact match

Coverage

2.3.1.3 Country spatialCoverage,

contentLocation

Codebook is
broader

2.3.1.4 Geographical

Coverage
spatialCoverage,
contentLocation,
locationCreated

Codebook is
broader

2.2.3.7 Universe identifier extension

(PropertyValue)

Codebook is
narrower

Producers and
Sponsors

2.1.2.1 Investigators author, creator,

accountablePerson

Codebook is
broader

2.1.3.1 Other Producers Contributor, editor Codebook is

broader
2.1.3.6 Funding Funder Exact match

2.1.2.2 Other

Acknowledgements
Contributor, sponsor Codebook is

broader

 DDI – CDI: Integrating Data for Better Science

 48

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

2.4.1.2 Study Site contentLocation Codebook is
narrower

Sampling

2.3.1.4 Sampling

Procedure

potentialAction Codebook is
narrower

2.3.1.5 Deviations from

Sample Design

correction Codebook is
narrower

2.3.3.1 Response Rates responseRate Exact match

2.3.1.12 Weighting weighting Exact match

Data
Collection

2.2.3.2 Dates of Collection accrualMethodology,

accrualPeriodicity,
accrualPolicy

Codebook is
broader

2.3.1.6 Mode of Data

Collection
potentialAction Codebook is

narrower

2.3.1.3 Frequency of Data
Collection

accrualMethodology,
accrualPeriodicity,
accrualPolicy

Codebook is
broader

2.3.1.9 Notes on Data

Collection
notesOnDataCollection Exact match

Questionnaires measurementTechnique Codebook is

narrower
2.3.1.2 Data Collectors contributor Codebook is

narrower
Data
Processing

2.3.1.13 Data Editing correction Codebook is

narrower
2.3.2 Other Processing potentialAction Codebook is

narrower

 DDI – CDI: Integrating Data for Better Science

 49

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

Data
Appraisal

2.3.3.2 Estimate of

Sampling Error

estimateOfSamplingError Exact match

2.3.3.3 MEIRU Data

Quality Metrics
dataQualityMetrics Exact match

Data Access

2.4.2.4 Access Authority provider Codebook is

narrower
2.4.2.1 Confidentiality confidentiality Exact match

2.4.2.7 Access Conditions conditionsOfAccess,

license

Codebook is
broader

2.4.2.5 Citation

Requirement
citationRequirement Exact match

Disclaimer
and Copyright

2.4.2.8 Disclaimer disclaimer Exact match

2.1.3.2 Copyright copyrightYear,

copyrightHolder

Codebook is
broader

2.2.12 Contacts provider,

accountablePerson

Codebook is
narrower

2.1.4.2 Contact Persons provider,

accountablePerson

Codebook is
narrower

3. File
Description

Data Files

3.1.2 Contents description captured under

study description
3.1.7 Producer author, creator captured under

study description

 DDI – CDI: Integrating Data for Better Science

 50

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

3.1.10 Missing Data notesOnDataCollection Codebook is
narrower

3.2 Notes notesOnDataCollection Codebook is
narrower

4. Variables
Description

variableMeasured Exact match

4.2.15 Definition description Codebook is

narrower
4.2.12 Universe identifier extension

(PropertyValue)

Codebook is
narrower

4.2.21 Concepts identifier extension

(PropertyValue)

Codebook is
narrower

Question

4.2.8.1 Pre-Question Text measurementTechnique Codebook is

narrower
4.2.8.2 Literal Question measurementTechnique Codebook is

narrower
4.2.8.3 Post-Question Text measurementTechnique Codebook is

narrower
4.2.8.6 Interviewer

Instructions
measurementTechnique Codebook is

narrower

Derivation

4.2.19 Recoding and

Derivation
recodingAndDerivation Exact match

Security

Security conditionsOfAccess,

confidentiality

Codebook is
broader

 DDI – CDI: Integrating Data for Better Science

 51

Section Subsection Nesstar Publisher
Upper Model
schema.org Dataset Comparison

5. External
Resources

Resource
Description

citation citation is its own

ResearchComponent
in a
ResearchProgram
with the same
properties as a
Codebook

Type about Codebook is
narrower

Title headline Exact match

Subtitle alternativeHeadline no equivalent in
Schema.org

Author(s) author, creator Codebook is
broader

Date dateCreated Codebook is
broader

Country contentLocation Codebook is
broader

Language inLanguage Exact match

Format encodingFormat Codebook is
broader

ID Number identifier Exact match

Contributor(s)
and Rights

Contributor(s) contributor Exact match

Publisher(s) publisher Exact match

Rights accessRights Exact match

 DDI – CDI: Integrating Data for Better Science

 52

 DDI – CDI: Integrating Data for Better Science

 53

C. Another Codebook / Core Map

Please note that the name for DDI – CDI while under development was “DDI 4”.

The poster which appears here is difficult to read in this format, but is available online at Mapping DDI2 to DDI4.

https://kuscholarworks.ku.edu/handle/1808/27779

 DDI – CDI: Integrating Data for Better Science

 54

<varGrp ID="WEIGHTS" type="other" var="V564 V565 V566">

<labl> Weights </labl>
</varGrp>

<var ID="V565" name="pspwght"
wgt="wgt" files="F1"
dcml="2" intrvl="contin">

<location width="4"/>

<labl> Post-stratification weight including design weight </labl>
<qstn>

<qstnLit> R35 Post-stratification weight including design weight </qstnLit>
</qstn>
<valrng>

<range UNITS="REAL"
min="0.000750077458907839"
max="6.85496650535486"/>

</valrng>

<sumStat type="vald"> 42359 </sumStat>
<sumStat type="invd"> 0 </sumStat>

<varFormat type="numeric" schema="other"/>
</var>

<var ID="V564" name="dweight"

wgt="wgt"
files="F1" dcml="2" intrvl="contin">

<location width="4"/>

<labl> Design weight </labl>
<qstn>

<qstnLit> R34 Design weight </qstnLit>
</qstn>
<valrng>

<range UNITS="REAL"
min="0.0044"max="4.34"/>

</valrng>
<sumStat type="vald"> 42359

</sumStat>
<sumStat type="invd"> 0 </sumStat>
<varFormat type="numeric“

schema="other"/>
</var>

DDI25 DDI4PropertyName IdentifiablesMapping AbstractSubstitution ParameterValues IsIdRef DDI4IdRefPath DDI4IdRefAppend Notes

/codeBook/
dataDscr/
var/
anlysUnit

Study/
hasInstanceVariable/
usesUnitType/
Definition

/codeBook:Study,
/codeBook/
dataDscr/
var:InstanceVariable,

/codeBook/dataDscr/
var/anlysUnit:UnitType

/codeBook/
dataDscr/
var/
qstn/

preQTxt

Study/
hasInstanceVariable/
sourceCapture/
hasInstruction/

instructionText/
textContent/
text/content

/codeBook:Study,
/codeBook/dataDscr/
var:InstanceVariable,

/codeBook/dataDscr/var/

qstn:RepresentedQuestion,
/codeBook/dataDscr/var/
qstn:Instruction

Capture:
RepresentedQuestion,

DynamicTextContent:
LiteralText

RepresentedQuestion/
hasInstruction/

instructionText/
textContent/

purpose/

languageSpecificStructuredString/

content='PreQuestionText'

/codeBook/
dataDscr/
var/@ID

Study/
hasInstanceVariable/
localId/
localIdValue

/codeBook:Study,
/codeBook/
dataDscr/
var:InstanceVariable

FALSE Program will need to
match DDI2 variable
ID to DDI4 DdiUrn
for references to the
variable like varGrp

/codeBook/
dataDscr/

varGrp/@var

Study/hasVariableCollection/
hasAnnotation/
summary/
languageSpecificString/

Content

/codeBook:Study,

/codeBook/
dataDscr/

varGrp:VariableCollection

Study/
hasVariableCollection/

hasAnnotation/
summary/

languageSpecificString/

scope='DDI2 variable IDs'

TRUE contains/
member

TRUE, FALSE requires matching
DDI2 ID with DDI4
DdiUrn and inserting
DDI4URN references
into the
VariableCollection

/codeBook/
dataDscr/
var/
Labl

Study/
hasInstanceVariable/
displayLabel/

languageSpecificStructuredString/
content

/codeBook:Study,

/codeBook/dataDscr/
var:InstanceVariable

Mapping DDI2 to DDI4, Larry Hoyle and Joachim Wackerow

North American Data Documentation Initiative Conference (NADDI 2019), Ottawa, Canada, April 2019. Larry Hoyle IPSR, University of Kansas; Joachim Wackerow, GESIS - Leibniz Institute for the Social Sciences

• This poster describes a mapping of leaf DDI2 elements into corresponding DDI4 properties. The
mapping can be described as a multi-column, machine actionable, table.

• DDI2 and the later versions differ in the underlying reliance on reusable objects. This makes
mapping from DDI2 to DDI4 complicated. Software using this table can also collapse content that
is repeated in DDI2 (like CodeLists) into single reused DDI4 objects.

• The table is derived from a spreadsheet listing DDI2 elements important to CESSDA. That table
was further refined at the DDI4 Norway Sprint. The table below right explains the role of each
column in the mapping table. Those columns contain the information needed to move
information from one model to the other. Examples in the table below are color coded to
corresponding cells in the table above.

The example below is taken from the European Social Survey file ESS1e06.6.xml

Sample rows from the mapping table. The full table currently lists 181 DDI25 XPaths.
This table can grow as new element types are found in DDI2 instances.

DDI2 varGrp “Weights”

DDI2 var “V564”

VariableCollection object

Id = 84f810fb-7555-4bb8-af88-2148baca7d85

DDI4 Objects

InstanceVariable object

Id = b17688c1-97a9-41f0-8ff1-4b7fe367c3f3
Name = “dweight”
displayLabel =

DDI2 var “V565”

LabelForDisplay StructuredDatatype

languageSpecificStructuredString =
locationVariant =
validDates =

maxLength =

(Contains)
URN:DDI:example.org:b17688c1-97a9-41f0-8ff1-4b7fe367c3f3:1

LanguageSpecificStructuredStringType

StructuredDatatype
Content = “Design weight”
language =

scope =
…

isPlainText =
structureUsed =
otherDefined =

Post Processing

• As DDI2 instances are processed, XPaths of leaf elements with content that do not have an entry in the mapping table can be recorded
for possible inclusion in future versions of the mapping table.

• Some elements in DDI2, like varGrp, will make reference to elements that appear later in the document. This means that assigning
InstanceVariables to a VariableCollection or InstanceVariables to VariableStatistics should be done after a first pass through the DDI2
document.

• DDI4 allows reuse. Another type of post-processing can collapse duplicated content like repeated codelists into references to just one
instance. This process might require parameters to dictate how aggressive the collapsing is. For example should all identical categories
be collapsed into a single one, or only those together in duplicate CategorySets?

• We’re working on adding some of these features to the DDI4R R package.

InstanceVariable object
Id = b10f7a22-97f6-4971-99cf-481e2cc12367

VariableStatistics object

Id = 00091102-8197-4387-b738-
a1bd8eb9c736
hasSummaryStatistic =

M
ap

s l
ab

l t
o a

 p
ro

perty

Maps s
umStat to

 an object

SummaryStatistc StructuredDatatype

Content = “Design weight”
typeOfStatistic =
hasStatistic =

Statistic StructuredDatatype
Content = “Design weight”
content = “42359”
isWeighted =
computationBase =
typeOfNumericValue =

Maps var to an object

Maps varGrp to an object

Maps var to an object

Column Function Example Details

DDI25
The unpredicated XPath of a
DDI2 text or attribute node

/codeBook/dataDscr/var/anlysUnit Each piece of information to be imported from
DDI2 should have a corresponding XPath listed.

DDI4PropertyName

The corresponding path to a
leaf in DDI4

Study/hasInstanceVariable/
usesUnitType/definition

The first node in this path is a DDI4 class. The
remaining nodes are properties in a chain down
to a leaf value.
The value of some properties are references to
other objects, that object may need to be
created. Other values are "structured
datatypes".

IdentifiablesMapping

This maps a DDI2 sub-path to a
DDI4 Identifiable class. An
object of that class will need to
be created for each unique
instance of that DDI2 sub-path.

/codeBook:Study,
/codeBook/dataDscr/var:InstanceVariable
,
/codeBook/dataDscr/var/anlysUnit:UnitTy

pe

In the example to the left, for each unique var
element in a DDI2 instance, the same DDI4
InstanceVariable needs to be used. A predicated
XPath identifies a specific DDI4 object, e.g.
/codeBook[1]/dataDscr[2]/var[7] indicates a
sepcific InstanceVariable. In this example the 7th
variable in the 2nd dataDscr element of the
codebook always maps to the same reusable
InstanceVariable.

AbstractSubstitution

Some references in the DDI4
model are to abstract classes.
In these cases it is necessary to
specify which extension of the
abstract class should be used in
the mapping.

Capture:RepresentedQuestion,
DynamicTextContent:LiteralText

In this example a sourceCapture associates with
the abstract class Capture. The mapping will use
the RepresentedQuestion extension of the
Capture.

ParameterValues

Some values in DDI4 can use
additional explanatory
metadata. This column lists the
path and the value for that
information.

RepresentedQuestion/hasInstruction/
InstructionText/textContent/purpose/
languageSpecificStructuredString/
content='PreQuestionText'

The LiteralText above is further described as
"PreQuestionText"

IsIdRef

Is this value a reference to an
ID in the DDI2 XML (an
xs:IDREF)?, if so this will
ultimately need to be
transformed into a proper
reference in DDI4 through a
DDI URN.

TRUE An example is the @var attribute of the DDI2
varGrp. This will need to be implemented as a
reference to an InstanceVariable in a
VariableCollection in DDI4.

DDI4IdRefPath

This is the sub-path within the
last DDI4 identifiable object for
the DDI URN of the referenced
object.

contains/member In the case of a varGrp, the VariableCollection
has a contains/member value that is the URN of
the DDI4 InstanceVariable created to match the
DDI2 var referenced by the @var IDREF.

DDI4IdRefAppend

This describes whether to
append or replace values in the
DDI4 path.

TRUE, FALSE In the case above, there may be more than one
member property under contains, but there can
only be one value for member.

Notes

Used to describe any notes for
the mapping

requires matching DDI2 ID with DDI4 DdiUrn
and inserting DDI4URN references into the
VariableCollection

In this example, it describes what is needed in
the matching process of DDI2 IDs and DDI4
URNS.

DDI2 XML

Column Descriptions for the Table Above

DDI25, DDI4PropertyName, and IdentifiablesMapping columns from DDI2 anlysUnit

AbstractSubstitution and ParameterValues from DDI2 preQTxt
IsIdRef, DDI4IdRefPath, DDI4IdRefAppend, and Notes from DDI2 varGrp/@var

(for InstanceVariable)

URN:DDI:example.org: b10f7a22-97f6-4971-99cf-481e2cc12367:1

(Contains)
URN:DDI:example.org:b10f7a22-97f6-4971-99cf-481e2cc12367:1

 DDI – CDI: Integrating Data for Better Science

 55

D. DDI - CDI Upper Model / Dublin Core Map

Upper Model Dublin Core Notes

about subject dc is skos:broader

abstract abstract dc is skos:exactMatch

accessMode format, type, medium DC has a controlled
vocabulary for type which
includes the set of media
types specified by the
Internet Assigned
Numbers Authority

dc is skos:closeMatch

accessModeSufficient

accessibilityAPI

accessibilityControl

accessibilityFeature

accessibilityHazard

accessbilitySummary

accessRights rights dc is skos:exactMatch

accountablePerson publisher dc is skos:closeMatch

accrualMethod accrualMethod dc is skos:exactMatch

accrualPeriodicity accrualPeriodicity dc is skos:exactMatch

accrualPolicy accrualPolicy dc is skos:exactMatch

aggregateRating

alternativeHeadline alternative dc is skos:exactMatch

associatedMedia type dc is skos:closeMatch

audience audience dc is skos:exactMatch

audio type dc is skos:broader

author author dc is skos:exactMatch

award

character

citation bibliographicCitation dc is skos:closeMatch

citationRequirement

comment

commentCount

concept

 DDI – CDI: Integrating Data for Better Science

 56

Upper Model Dublin Core Notes

conditionsOfAccess available, accessRights,
isRequiredBy, requires

dc is skos:narrower

confidentiality

contentLocation spatial dc is skos:broader

contentRating

contentReferenceTime temporal, valid dc is skos:narrower

contributor contributor dc is skos:exactMatch

copyrightHolder rightsHolder dc is skos:exactMatch

copyrightYear dateCopyrighted dc is skos:exactMatch

correction provenance dc is skos:broader

creativeWorkStatus valid dc is skos:narrower

creator creator dc is skos:exactMatch

dataQualityMetrics provenance dc is skos:broader

date date dc is skos:exactMatch

dateAccepted date dc is skos:broader

dateCreated date, dateCopyrighted,
dateSubmitted

dc is skos:narrower

dateModified modified dc is skos:exactMatch

datePublished issued dc is skos:closeMatch

dateSubmitted dateSubmitted dc is skos:exactMatch

disclaimer

discussionURL hasPart dc is skos:broader

editor contributor dc is skos:broader

educationalAlignment educationLevel dc is skos:broader

educationalUse

encoding medium, type dc is skos:closeMatch

encodingFormat medium, type dc is skos:broader

estimateOfSamplingError

exampleOfWork references,
isReferencedBy,
provenance

dc is skos:narrower

 DDI – CDI: Integrating Data for Better Science

 57

Upper Model Dublin Core Notes

expires valid dc is skos:narrower

funder contributor dc is skos:broader

genre type dc is skos:closeMatch

hasPart hasPart dc is skos:exactMatch

headline title dc is skos:closeMatch

inLanguage language dc is skos:closeMatch

interactionStatistic hasPart dc is skos:broader

interactivityType instructionalMethod dc is skos:broader

isAccessibleForFree license dc is skos:broader

isBasedOn provenance dc is skos:closeMatch

isFamilyFriendly

isPartOf isPartOf dc is skos:exactMatch

keyWords subject dc is skos:closeMatch

learningResourceType

license license dc is skos:exactMatch

locationCreated provenance dc is skos:broader

mainEntity subject dc is skos:broader

material medium dc is skos:closeMatch

materialExtent extent dc is skos:broader

mentions references dc is skos:closeMatch

notesOnDataCollection provenance dc is skos:broader

offers

position

producer publisher dc is skos:closeMatch

provider contributor dc is skos:broader

publication provenance dc is skos:broader

publisher publisher dc is skos:exactMatch

publisherImprint

publishingPrinciples

recodingAndDerivation

recordedAt provenance dc is skos:broader

 DDI – CDI: Integrating Data for Better Science

 58

Upper Model Dublin Core Notes

releasedEvent provenance dc is skos:broader

researchQuestion

researchHypothesis

responseRate

review

schemaVersion

sdDatePublished

sdIdentifier

sdLicense

sdPublisher

sdVersion

sdVersionNotes

security

sourceOrganization

spatial spatial dc is skos:exactMatch

spatialCoverage spatial dc is skos:broader

sponsor contributor dc is skos:broader

studyType type dc is skos:broader

temporal temporal dc is skos:exactMatch

temporalCoverage temporal dc is skos:broader

text

thumbnailURL hasPart dc is skos:broader

timeRequired

translationOfWork

translator contributor dc is skos:broader

typicalAgeRange

unitOfAnalysis type dc is skos:broader

universe type dc is skos:broader

version hasVersion, isVersionOf dc is skos:closeMatch

video hasPart dc is skos:broader

weighting

 DDI – CDI: Integrating Data for Better Science

 59

Upper Model Dublin Core Notes

workExample isFormatOf dc is skos:broader

workTranslation isFormatOf dc is skos:broader

